
Computers & Industrial Engineering 157 (2021) 107310

Available online 20 April 2021
0360-8352/© 2021 Elsevier Ltd. All rights reserved.

Bayesian optimization for a multiple-component system with target values

Jihwan Jeong 1, Hayong Shin *

Department of Industrial & Systems Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

A R T I C L E I N F O

Keywords:
Multiple-component system
Bayesian optimization
Sequential experimental design
Metamodeling
Gaussian processes

A B S T R A C T

Bayesian optimization (BO) that employs the Gaussian process (GP) as a surrogate model has recently gained
much attention in optimization of expensive black-box functions. In BO, the number of experiments necessary to
optimize a function can be considerably reduced by sequentially selecting next design points that are optimal
with respect to some sampling criterion. However, little research has been done to address the optimization of a
multiple-component system where each component has a certain target value to meet. In this paper, we aim to
find an optimal design parameter in the sense that the response function is close to the target value for every
component. To this end, the squared errors from the targets are aggregated to produce an objective function.
Instead of modeling this objective using GP as in the standard BO formulation, we place the GP prior over the
response function. As a result, the distribution over the objective function follows that of the weighted sum of
non-central chi-squared random variables (WSNC) due to the inter-dependency between responses. When
components of the system are changed, the standard BO suffers inefficiency; however, our formulation enables us
to retain a learned model, resulting in better efficiency. We compare the rates of convergence of different BO
methods and other black-box optimization baselines using several test functions. The performance of our model
is comparable to the standard BO when there is no change in the system, but the superiority of our method
becomes clear when changes in the components occur.

1. Introduction

In modern mass production systems, batch processing is frequently
used. It is quite a challenge to determine optimal process parameters for
batch processing of heterogeneous parts (e.g. components of different
shape and size). An interesting example of batch processing of multiple
heterogeneous component is PCB (Printed Circuit Board) assembly
process using SMT (Surface Mount Technology), which is a main
workhorse in electronic appliance manufacturing. Briefly speaking, SMT
process typically consists of the following three steps: (1) solder paste is
printed on PCB, (2) chips are placed on the board, then (3) the board is
fed into an oven for soldering. Step (1) and (3) are examples of batch
processing of heterogeneous multiple components. If we focus on step
(1) solder paste printing, each PCB has multiple locations, called pads,
on which solder paste is transferred through apertures of a stencil mask.
It is crucial to have the right amount of paste for each pad. In this case,
each pad is a component, and the amount of solder paste printed on it is
the process response, for which target value is given respectively. The
process engineer wants to find the optimal process parameters for the

solder paste printer. There are many other examples sharing the same
characteristics (heterogeneous multiple components with the same kind
of process response) in manufacturing or service systems. In many cases,
we have to rely on experimental trials in order to find ‘good’ process
parameters.

When such a system is expensive-to-evaluate, how to design exper-
iments to find optimal parameters within fewest possible trials is of
crucial importance. This has been successfully dealt with by Bayesian
optimization (BO) for single-component systems (Hennig & Schuler,
2012; Jones, Schonlau, & Welch, 1998; Snoek, Larochelle, & Adams,
2012). The idea of BO is to build a surrogate model (e.g. Gaussian
Process, GP) and use it to sequentially select next design parameters in
an intelligent manner via maximization of an acquisition function. The
BO framework has also been applied to optimize systems with target
values. For example, Picheny, Ginsbourger, Roustant, Haftka, and Kim
(2010) adaptively selected next designs in order to reduce the model
uncertainty around a target value. Similarly, Ranjan, Bingham, and
Michailidis (2008) tackled the contour estimation problem using the
expected improvement as the acquisition function.

* Corresponding author.
E-mail addresses: jhjeong@mie.utoronto.ca (J. Jeong), hyshin@kaist.ac.kr (H. Shin).

1 The first author is currently affiliated with University of Toronto.

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

https://doi.org/10.1016/j.cie.2021.107310
Received 29 May 2019; Received in revised form 17 January 2021; Accepted 8 April 2021

mailto:jhjeong@mie.utoronto.ca
mailto:hyshin@kaist.ac.kr
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2021.107310
https://doi.org/10.1016/j.cie.2021.107310
https://doi.org/10.1016/j.cie.2021.107310
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2021.107310&domain=pdf

Computers & Industrial Engineering 157 (2021) 107310

2

However, there has been little work on optimizing multiple-
component systems with target values using BO methods. In principle,
one could employ multi-objective BO methods (MOBO) by setting one
objective per each component. The MOBO framework, however, is most
useful when the objectives compete with one another, and the trade-off
between them is critical (Knowles, 2006). Furthermore, state-of-the-art
MOBO methods often assume that the objectives are independent of
each other (Belakaria, Deshwal, & Doppa, 2019; Hernandez-Lobato,
Hernandez-Lobato, Shah, & Adams, 2016). However, as we assume
that process responses are of the same kind, making use of the de-
pendency between the responses from components turns out to be
effective. Furthermore, unlike the multi-objective setting, the tradeoffs
between objectives—related to responses from different compo-
nents—are not clear in the problem setting we consider.

Hence, to avoid being overly-complicated, we rather opt for mini-
mizing the weighted sum of squared errors, with each error being incurred
by one component due to a deviation from the assigned target value.
Here, we assume that each component c of the system can be fully
represented and uniquely determined by a feature vector yc. We further
assume that the response from the component c is a scalar function of a
controllable parameter vector x and the feature vector yc, i.e. f(x, yc)

where x ∈ RdX ,yc ∈ RdY , and f : RdX+dY →R. Then, the objective function
is of the form below,

ℒT(x) =
∑C

c=1
wc(f (x, yc) − Tc)2 (1)

where wc denotes a weight given to the c-th component, T =

(T1,…,TC)
⊤ is the associated target vector, and C is the total number of

components.
Standard BO methods would place a GP prior over the objective

ℒT(x). When a changeover—which we define as addition, removal or
replacement of any components in the system—occurs, those methods
suffer from loss of data and information obtained so far. This is because
changes in components or target values induce the change in the
objective function, and then the GP surrogate model approximating the
previous objective function becomes no longer valid.

In this paper, we develop a BO framework for multiple-component
systems with target values, which can be reused when the system
design is changed. The main technical contribution follows from the fact
that we place a GP prior over the response f, namely the result of an
experiment from each component. Then, we show that the objective
function ℒT(x) follows the distribution of a weighted sum of non-central
chi-squared random variables (WSNC) from our modeling assumption.
This understanding enables us to define and compute the expected
improvement (EI) acquisition function, which in turn helps us sequen-
tially find the global optimum of ℒT(x).

We review Gaussian Process Regression and Bayesian Optimization
in Section 2. Then, we propose our novel BOMCT method (Bayesian
Optimization for a Multiple-Component system with Target values) in
Section 3. With a few commonly used simulated test functions, we
demonstrate the validity and effectiveness of our method. The optimi-
zation process of the Branin test function is illustrated in Section 4.1,
followed by the results comparing the rates of convergence of different
methods on several test functions (Section 4.2). As substantiated by the
results, our method not only quickly reduces objective function values
but also outperforms other methods—in terms of the number of itera-
tions needed—when some components of the system are changed.

2. Background

2.1. Gaussian process regression (GPR)

A Gaussian process (GP), which defines a distribution over functions,
can be fully described by its mean and covariance function, that is,

f (x) ∼ 𝒢℘(m(x), k(x, x′)) (2)

Here, k(x, x′) is a positive definite covariance function also known as a
kernel. The mean function, m(x), is usually set to the zero vector because
we are interested in the posterior distribution rather than the prior in
most cases.

After observing data D = {X,t} = {(xi,ti)|i = 1,…,n}, we obtain the
predictive distribution as the conditional distribution of f* at test points
X* given t. Since this is also Gaussian, it can be put as follows (Ras-
mussen & Williams, 2006):

f*|X*,X, t ∼ 𝒩(f*, cov(f*)) (3)

cov(f*) = K(X*,X*) − K(X*,X)[K(X,X) + σ2
nI]

− 1K(X,X*)

f* = E[f*|X, t,X*] = K(X*,X)[K(X,X) + σ2
nI]

− 1t
(4)

An independent noise ε ∼ 𝒩(0, σ2
n) is assumed here, resulting in

t = f(X)+∊ ∼ 𝒢℘(0, k′

(⋅, ⋅)) where k′(xi,xj) = k(xi,xj) + σ2
nδij, with σij =

1 if i = j or 0 otherwise.
At a test point x*, the predictive distribution gives an estimator of the

function value as f*, and the uncertainty is quantified by cov(f*).
Although the accuracy of prediction largely depends on the selection of
kernel function and its hyperparameters, GPR is by far the most
preferred surrogate in BO due to its flexibility as well as tractability
(Krause, Singh, & Guestrin, 2008; Snoek et al., 2012). More compre-
hensive treatment of GPR can be found in Rasmussen and Williams
(2006).

2.2. Surrogate modeling and Bayesian optimization

Consider the optimization problem of a scalar objective function J :

Rd→R defined on a d-dimensional continuous domain, 𝒳 . When J in-
dicates the result of some expensive experiment, then direct optimiza-
tion methods requiring a number of function evaluations are
prohibitive. As such, we may resort to methods which employ a surro-
gate model that approximates the original function while requiring far
less computation in optimizing it (Crombecq, Laermans, & Dhaene,
2011).

That being said, we can roughly describe the BO methodology as a
surrogate-based optimization scheme that harnesses convenient features
of the Gaussian distribution in optimizing a complex function. Frazier
(2018) has summarized the common properties of objective functions
that are relevant to BO, and some of them are presented below:

1. J is an expensive function requiring a considerable amount of costs to
evaluate; hence, the number of possible evaluations of the function is
limited.

2. J is a black-box function in the sense that it lacks a known structure
(e.g. concavity) and analytic form that would otherwise simplify the
optimization.

3. Often, no information except the values of observed J is available.
Thus, the first and second-order optimization methods cannot be
used.

Due to (ii) and (iii), we are left with derivative-free methods. In
addition, the number of function evaluations should be minimized in
order to account for (i). BO addresses these issues by (1) using a GP
model as a surrogate for J, (2) sampling based on some criterion
computed from the posterior distribution of the GP, (3) finally,
sequentially updating the posterior distribution. This sampling criterion
is called an acquisition function. The general schematic description of
BO is summarized below in Algorithm 1.

Algorithm 1. General Scheme of BO (Frazier, 2018)

The most popular choice of acquisition function is the expected

J. Jeong and H. Shin

Computers & Industrial Engineering 157 (2021) 107310

3

improvement (EI), which was proposed by Močkus (1974) and later
popularized by Jones et al. (1998). The ‘improvement’ at a point x at the

nth iteration of BO is defined as In(x) =
[
Jmin

n − Ĵ(x)
]+

. Note that Ĵ

denotes a GP surrogate model, Jmin
n is the minimum objective value

observed so far, and [⋅]+ is the positive part of a value inside the brackets.
This improvement is a random variable because of Ĵ; therefore, we take
the expectation under the posterior distribution on J and obtain a real-
valued score.

It is easy to see that the expected improvement at the nth step, EIn(x),
is:

where Z =
f(x)− μ(x)
σ(x) ∼ 𝒩 (0, 1), and ϕ,Φ refer to the density and distri-

bution functions of the standard normal distribution, respectively
(Brochu, Cora, & de Freitas, 2010). This acquisition automatically bal-
ances the exploitation and exploration. To see this, note that the EI is
large when μ(x) is small or σ(x) is large. In other words, the EI exploits
current estimation by giving a high score to x when μ(x) is small, while it
also encourages points that are located in a less-explored region with
high σ(x) to be sampled.

2.3. Optimizing the sum of squared errors using Bayesian optimization

As described in Section 1, we often want a multiple-component
system to output a result in which f(x, yc) is close to a certain target
Tc. In the common BO setting, we simply place a GP prior on ℒT(x) of Eq.
1 and follow Algorithm 1 accordingly.

This approach is efficient only when it is guaranteed that the com-
ponents of the system are not changing at all times. In reality, however,
they can be frequently replaced with different ones. When yc changes, so
does f(x, yc), which in turn alters the objective function ℒT(x). This
implies that we have to learn ℒT(x) all over again, leading to critical

inefficiency. That is, when yc changes, we have no choice but to discard
the information collected so far if we model ℒT(x) with a GP surrogate.

In Section 3, we instead directly model the response function f(x, y)
using a GP surrogate and subsequently optimize ℒT(x) under the guid-
ance of an appropriately developed acquisition function. This proposed
method retains efficiency even if the features yc change. That way, we
can utilize the information—obtained from the experiments performed
with one set of components—in optimizing the parameters of the
multiple-component system with another set of components.

3. Model description

3.1. Overview

As noted in previous sections, we are interested in optimizing a
black-box multiple-component system that is expensive-to-evaluate. Let
the function f : RdX+dY →R represent scalar outputs of evaluations con-
ducted on this system. We assume that f depends on two kinds of vari-
ables: x and y. The design parameter x ∈ 𝒳⊂Rd

X is the one that we would
like to optimize, whereas y ∈ 𝒴⊂Rd

Y is the variable that uniquely and
fully represents each component. In other words, each component c has
one yc vector that is fixed for the component unless otherwise
mentioned.

In this paper, we adjust the design parameter x such that the response
from a component c gets close to a certain target Tc for all c (c = 1,…,C).
That is to say, we would like |f(x, yc) − Tc| to be small. Naturally, we can
set up a loss function by summing up the squared errors from the cor-
responding targets at all components. This loss function will signifi-
cantly penalize large deviations from the targets. A diagonal weight
matrix diag(w)—that is user-defined and assumed to adequately reflect
the importance of each component—is introduced because we are
aggregating all errors. Additionally, with the response vector f(x) =

E[In(x)] = En[max(0, Jmin
n − Ĵ(x))|𝒟n, x] =

⎧
⎨

⎩

(Jmin
n − μ(x))Φ(Z) + σ(x)ϕ(Z) , if σ(x) > 0

0 , otherwise
(5)

J. Jeong and H. Shin

Computers & Industrial Engineering 157 (2021) 107310

4

[
f(x, y1),…, f(x, yC)

]⊤, the target vector T = [T1,…,TC], and the C × C
identity matrix I, we can reiterate Eq. 1 in vectorized form,

ℒT(x) =
∑C

c=1
wc(f (x, yc) − Tc)2

= (f(x) − T)⊤ diag(w) (f(x) − T) (6)

Then, we put a GP prior on f(x,y):

f̂ (x, y) ∼ 𝒢℘(m(x, y), k((x, y), (x′, y′))) (7)

Note that hereafter the GP model is denoted as f̂ , while the actual
response function is f. Similarly, ℒ̂T denotes the loss function induced by
f̂ . We can see that an experiment at one design point x yields C re-
sponses, i.e. f(x) =

[
f(x, y1),…, f(x, yC)

]⊤, which are then combined to
give one ℒT(x) value. After having experimented at n different design
points (x1, …, xn), we have the dataset Dn = {X, f}, where X is a
nC × (dX +dY) input matrix and f = [f⊤(x1),…, f⊤(xn)]

⊤
∈ RnC×1 is the

response vector.
Given the GP prior (Eq. 7) and the dataset Dn, the posterior distri-

bution at some query point x* is similarly computed as in Eq. 3 and Eq. 4.
One critical difference is that we should always consider the predictive
distribution for all C responses. Thus, we augment x* with {yc}

C
c=1 to

obtain a C × (dX +dY) query matrix X*:

X* =

⎡

⎣
x* y1
⋮ ⋮
x* yC

⎤

⎦ (8)

Then, the predictive distribution at x* forms a multivariate normal dis-
tribution defined as follows (assuming identical Gaussian noise, σ):

f̂(x*)|X*,X, f ∼ 𝒩(μ*,Σ*)μ* = K(X*,X)
[
K(X,X) + σ2I

]− 1f ∈ RC×1Σ*

= K(X*,X*) − K(X*,X)
[
K(X,X) + σ2I

]− 1K(X,X*) ∈ RC×C (9)

Since we are minimizing ℒT(x) in Eq. 6, the improvement at x* is

defined as In(x*) =
[
ℒmin

n − ℒ̂T(x*)
]+

, where ℒmin
n denotes the minimum

loss we have obtained until the nth iteration. In the standard BO, ℒ̂T(x*)

is modeled by a GP prior. In this case, the expected improvement is
straightforward to compute (Section 2.2). When we place a GP prior on
the response function, however, ℒ̂T(x*) becomes a quadratic form in the
Gaussian random variables of Eq. 9 associated with the diagonal weight
matrix diag(w). Because f(x*, yc) are all correlated as per Σ*, ℒ̂T(x*) does
not follow the non-central chi-squared distribution.

In the following subsection, we show that ℒ̂T(x*) follows the distri-
bution of a weighted sum of non-central chi-squared random variables
(WSNC) and present a method to compute the expected improvement of
the random variable.

3.2. The expected improvement acquisition function

Suppose that Q is a continuous non-negative random variable that
has a differentiable cumulative function (cdf) FQ and the density func-
tion (pdf) q. If we define an improvement of Q with respect to Qmin as I =

max{0,Qmin − Q}, then the expected improvement can be computed as
follows:

EIQ = EQ[I] = EQ

[(
Qmin − Q)⋅1Qmin⩾Q

]

= Qmin⋅P(Q⩽Qmin) −

∫ Qmin

0
t⋅q(t)dt

= Qmin⋅FQ(Qmin) − [t⋅FQ(t)]Qmin
0 +

∫ Qmin

0
FQ(t)dt =

∫ Qmin

0
FQ(t)dt

(10)

This result indicates that the expected improvement of the random

variable Q boils down to the one-dimensional definite integral of the cdf
of Q. Hence, the cdf of ℒ̂T(x*) would suffice to compute the expected
improvement at any query point x*.

3.2.1. The squared sum of dependent Gaussian random variables
Let Y denote an m-dimensional multivariate Gaussian random vector

whose mean vector and positive definite covariance matrix are μ and Σ,
respectively. Then, Q = Y⊤AY is called the quadratic form in Y associated
with a symmetric matrix A. We can show that Q becomes the weighted
sum of non-central chi-squared random variables (WSNC) (Ha & Pro-
vost, 2013; Mathai & Provost, 1992).

Proof. Define a random vector Z = L− 1(Y − μ), where L is the lower
triangular matrix from the Cholesky decomposition of Σ = LL⊤. Then,
we see that Z ∼ 𝒩(0, I), with an m × m identity matrix I. By putting
Y = L(Z+L− 1μ) into Q = Y⊤AY, we get the following:

Q = Y⊤AY = (Z + L− 1μ)⊤L⊤AL(Z + L− 1μ)
= (Z + L− 1μ)⊤PΛP⊤(Z + L− 1μ) (11)

= (P⊤Z + P⊤L− 1μ)⊤Λ(P⊤Z + P⊤L− 1μ)
= (U + δ)⊤Λ(U + δ)

(12)

=
∑m

i=1
λi(Ui + δi)2

=
∑m

i=1
λiχ2(δ2

i)
(13)

In Eq. 11, the orthogonal diagonalization of the symmetric matrix L⊤AL
yields the orthogonal matrix P and the diagonal matrix Λ whose ele-
ments (λi) are the eigenvalues. Subsequently, U = P⊤Z ∼ 𝒩(0, I) and δ =

P⊤L− 1μ are introduced in Eq. 12. It can be easily checked that the
random vector U indeed follows the multivariate standard normal dis-
tribution as below,

E[U] = P⊤E[Z] = 0
Cov(U) = E[UU⊤] = E[P⊤ZZ⊤P] = P⊤E[ZZ⊤]P = P⊤P = I

This means that all the elements of U are independent. Simply expanding
the matrix multiplication in Eq. 12 gives Eq. 13. Then, we can see that
(Ui + δi)

2 is the non-central chi-squared random variable with the non-
centrality parameter δi, where Ui and δi denote the ith element of U and
δ, respectively. □

3.2.2. The loss function as a quadratic form in Gaussian random variables
Suppose that we have the dataset Dn = {X, f} and the GP model f̂ (⋅,

⋅), as described in Section 3.1. When a candidate design x* is given, the
predictive distribution over the response from each of C components is
specified by Eq. 9. Also, the distribution over the loss function Eq. 6 is
specified by the random variable induced by f̂(x*):

ℒ̂T(x*) =
(

f̂(x*) − T
)⊤

diag(w)
(

f̂(x*) − T
)

(14)

Then, ℒ̂T(x*) follows the distribution of the WSNC random variable,
whose parameters are λc and δc:

ℒ̂T(x*) =
∑C

c=1
λcχ2(δ2

c) (15)

This result is a straightforward application of the analysis given in

Section 3.2.1, recognizing that
[

f̂(x*) − T
]
∼ 𝒩(μ′,Σ′) where μ′ = μ* − T

and Σ′ = Σ* are from Eq. 9. Consequently, we obtain λc and δc from Σ′ =

LL⊤,L⊤diag(w)L = PΛP⊤, and δ = P⊤L− 1μ′ .
Although there is no analytic form of the cdf for the WSNC random

variable, several computing libraries provide numerical tools of
approximation (Duchesne & de Micheaux, 2010). Because Eq. (10) is a
definite integral of the cdf, it can be easily obtained via quadrature

J. Jeong and H. Shin

Computers & Industrial Engineering 157 (2021) 107310

5

(Picheny, Gramacy, Wild, & Le Digabel, 2016).

Algorithm 2. BOMCT, optimizing a multiple-component system via
BO

3.3. Bayesian optimization scheme for a multiple-component system with
a target vector (BOMCT)

Algorithm 2 summarizes BOMCT. We have described in Section 3.2
how to compute the expected improvement acquisition function at every
candidate design point x* at the nth iteration step (EIn(x*)), which is
detailed in Algorithm 3.

Note that changes in components or target values can be easily
accommodated while we also retain the learned GP model. When
components have changed, then we just need to augment the new
feature vector {ynew

c }
Cnew
c=1 . If we want to optimize the system with

different target values, a new target vector T is simply subtracted from
μ* in Algorithm 3. Different weight vectors can also be applied with little
effort.

Algorithm 3. Computing EIn(x*) at the nth iteration
Input Minimum loss observed so far (ℒmin

n) Feature vectors of C components (
{

yc
}C

c=1)
Target vector (T) and weight vector (w) Dataset (Dn = {X, f}) and a query location
(x*)

Augment x* with {yc}
C
c=1,

xaug
* ←[(x*, y1)

⊤
,…, (x*, yC)

⊤
]
⊤

Compute the GP predictive mean (μ*) and covariance (Σ*) using Eq. 9
Perform Cholesky decomposition on Σ*,

Σ* = LL⊤

Compute parameters of the WSNC random variable,
L⊤diag(w)L = PΛP⊤; δ = P⊤L− 1μ′

Return EIn(x*) =
∫ ℒmin

n
0 F

ℒ̂T
(t)dt using δ and Λ via quadrature

4. Numerical results

In this section, we present the results of numerical simulations on

some popular test functions to validate BOMCT. Firstly, we visualize the
optimization process of the Branin function using the proposed method
in Section 4.1. Then, the rates of convergence of several baselines are
compared on four simulated test functions (Section 4.2). In Section

4.2.1, the systems consist of a small number of components, where each
component has a one-dimensional feature value y. In Section 4.2.2, we
examine the effect of the number of components using the 6-D Ackley
function. In this experiment, each component has either a 1-dimensional
or 2-dimensional feature.

The test functions are treated as a black box throughout the simu-
lations, which means that we do not have access to the functional forms
of the underlying response function. Moreover, the functions are
assumed to be expensive-to-evaluate; therefore, our primary goal is to
minimize the objective as fast as possible.

Simulations are conducted in Python using the libraries ‘GPy’ and
‘GPyOpt’ (GPy, 2012; GPyOpt authors, 2016). After sampling from the
initial design points or whenever a new observation is made, the
hyperparameters of any GP models are re-estimated via maximum
likelihood estimation (MLE). Since the distribution function of WSNC is
not available in Python, we use the ‘rpy2’ library to utilize the ‘Comp-
QuadForm’ package from R (Duchesne & de Micheaux, 2010) as well as
the implementation done in Picheny et al. (2016).

4.1. Illustration of the proposed BO

We first illustrate the patterns of the proposed acquisition function
with respect to not only the objective function but also the true response
function and its GP surrogate model. We use the Branin function for this
purpose defined as below (Surjanovic & Bingham, 2017):

f (x, y) = a(y − bx2 + cx − r)2
+ s(1 − t) cos(x)+ s (16)

where a = 1,b = 5.1/(4π2),c = 5/π,r = 6,s = 10, and t = 1/8π. Here,
the design variable subject to optimization is x.

As mentioned in Frazier, Powell, and Dayanik (2009) and indicated
in Algorithm 1, some initial designs are necessary for the estimation of
the hyperparameters of the GP model in the beginning. In the case of the

J. Jeong and H. Shin

Computers & Industrial Engineering 157 (2021) 107310

6

Branin function, initial evaluations have been made at three randomly
chosen points. Other experimental settings used in this example are
identical to those used in Section 4.2.1, which is reported in Table 1.
Two out of three feature values are changed after 4 iterations to examine
how the acquisition function behaves subject to such changes and
whether the new optimum can be found quickly.

Fig. 1a: In the first two iterations, the acquisition is large where the
uncertainty of the GP model is high. Furthermore, when the GP pre-
dictive means of components are closer to the target value, the acqui-
sition tends to be higher. Only 6 function evaluations, including those at
three initial designs, are enough for the model to accurately pick out the
global optimum of the objective function.

As mentioned repeatedly, it is not unusual that one or more com-
ponents in a multiple-component system are changed (termed ‘change-
over’). When there is a changeover in the system, we now need to
optimize a different objective function as the underlying response

function has changed (Fig. 1a). Note that after the changeover, one
function evaluation is conducted at the previously sampled point.

In the leftmost figure of Fig. 1b, the GP predictive variances corre-
sponding to the changed y are large (purple and green lines). The GP
model is almost certain about the true response functions near the lower
bound since the function has been evaluated around there, whereas
large predictive variances are observed where the optimum lies. The
acquisition peaks at two design points: one at which the GP mean in-
dicates the objective to be small, and the other at which the GP variances
are high as well as GP means are relatively close to the target value.

Even though the objective function has changed, it only takes few
more iterations to figure out the new optimum, thanks to the previously
trained GP model (Fig. 1b). Observe also that we do not have to sample
from a certain interval in the middle, which saves resources that would
otherwise be wasted.

Table 1
Experimental settings: dX and dY are the dimensionality of the design variable and the feature vector, respectively. ncomp is the number of components. The Matérn 52
kernel is used for GP models in BOMCT throughout all simulations. Details are described in the main text regarding how the feature vectors are chosen.

Test function Target dX dY ncomp Domain Covariance Kernel

Branin 100 1 1 3 (-5,10)
(1, 15)

Matérn 52

6-D Ackley 5 4 or 5 2 or 1 3 or 20 (− 5, 5)6

2-D Ackley 5 1 1 5 (− 5, 5)2

2-D Griewank 2 1 1 5 (− 5, 5)2

Fig. 1. Illustration of BOMCT. The
objective function (black dotted line)
and the acquisition (red line, in arbi-
trary units) are plotted together.
Shown below are the target value
(horizontal dotted line, set at 100); the
true response functions (dotted lines of
different colors) and their corre-
sponding GP predictive means (solid
lines of matching colors); the 95%
credible regions as shaded parts.
Sampled points are drawn as triangles
on x axis. The red triangles indicate
where the latest function evaluation
has been made.

J. Jeong and H. Shin

Computers & Industrial Engineering 157 (2021) 107310

7

4.2. Comparison of rates of convergence

We now investigate how BOMCT performs compared to some base-
lines. The compared methods are as follows:

• Latin Hypercube Sampling (LHS) (McKay, Beckman, & Conover,
1979) is a fixed space-filling experimental design where design
points are randomly sampled. This method is inherently non-
sequential and fixes all evaluation points prior to starting
experiments.

• EGO (Jones et al., 1998) is a standard BO method which uses the
expected improvement as the acquisition function.

• LCB (Srinivas, Krause, Kakade, & Seeger, 2010) is another standard
BO method which uses the lower confidence bound as the acquisition
function.

• ES (Hennig & Schuler, 2012) is a relatively recent standard BO
method which uses the entropy search as the acquisition function.

• MSRBF (Regis & Shoemaker, 2007) is a sequential black-box opti-
mization method that relies on using the RBF function as a surrogate
model.

• Tree-structured Parzen Estimator (TPE) (Bergstra, Bardenet, Bengio,
& Kégl, 2011) is a method which is often used in hyperparameter
optimization of expensive machine learning algorithms.

By the standard BO, we mean the BO methods that model the
objective function in Eq. 6 directly as a GP surrogate and then follow

Algorithm 1 while using EI, LCB or ES as the acquisition function.
We compare the rates of convergence simulated on four different test

functions. The settings of the simulations are specified in Table 1. For
simplicity, we assume that every component has an equal weight value.
As clearly stated, our goal is to minimize the objective function with
fewest possible function evaluations. Thus, we record the best (i.e., the
smallest) ℒT values obtained until each iteration during optimization.

After initial designs, a model chooses 25 more samples before a
changeover at which some or all components of the system are changed.
At the changeover, a small number of evaluations are made before
restarting the optimization process (three in the 6-D Ackley function and
one in the other functions). This is especially done for the standard BO
methods and MSRBF since they require initial designs to start with.
Additionally, we have reset the best ℒT value at the changeover since the
objective function is changed.

For each compared method and test function, we have conducted 15
simulation runs with different initial designs for each run; however
within each run, all methods start with the same initial samples for fair
comparison. We plot means and standard errors of all methods over the
optimization iterations. Also, we present box plots comparing BOMCT,
EGO and MSRBF in more detail.

4.2.1. Systems with a small number of components
The test functions examined in this study are the Branin, 6-D Ackley,

2-D Ackley and 2-D Griewank functions (see Table 1). We refer readers
to Surjanovic and Bingham (2017) for the exact definitions of these

Fig. 2. Comparison of the rates of convergence. The average of the best objective values from 15 simulation runs is plotted along with corresponding standard errors.
Read the right axis in each plot for the values after the changeover.

J. Jeong and H. Shin

Computers & Industrial Engineering 157 (2021) 107310

8

functions. For BOMCT, the Matérn 52 kernel function is used, while the
squared exponential (SE) or the Matérn 52 kernels are used in the
standard BO baselines. Note that the last one or two dimensions of the
test functions are used for feature vectors yc.

We manually select the feature vectors for the test functions when
there are 3 components; the vectors are chosen randomly when there are
more than 5 components. The feature values in the Branin function
change from (3.2, 5.5, 10.0) to (5.5, 9.0, 12.5). In the 6-D Ackley
function with 1-dimensional feature, (-1.0, 0, 1.0) and (-1.0, 2.0, 3.5) are
used before and after the changeover, respectively. For the test functions
with 5 components, 3 out of 5 features are changed at the changeover.

Fig. 2 shows the results of the experiments. Note that the best ℒT
values soar to different levels when a new set of features is applied to the
multiple-component system. This is ascribed to the fact that the

objective function has changed and that the first evaluation after the
changeover is made at the latest design point, which would be different
for different methods.

In general, we can observe superiority of the sequential methods over
the fixed design, i.e., LHS. Especially, BOMCT performs nicely across all
the test functions. In the 2-D Griewank function, the optima before and
after the changeover are located in the vicinity, leading to fast optimi-
zation among the sequential methods. Hence, the improvement of
BOMCT is only marginal. The performance gain is particularly con-
spicuous when it comes to the rates of convergence after the change-
overs. For example, in Fig. 2d, shortly after the three samples given to all
methods for adaptation to the changeover, BOMCT approaches the new
optimum at once. In contrast, ES, LCB and EGO have effectively failed to
minimize the objective within the available experimental budget.

Fig. 3. Detailed comparison of the rates of convergence on the Branin and 2-D Griewank functions. The shown values are the results from 15 simulation runs. Read
the right axis in each plot for the values after the changeover.

J. Jeong and H. Shin

Computers & Industrial Engineering 157 (2021) 107310

9

MSRBF, on the other hand, proves to be quite useful in optimizing the 6-
D Ackley function.

Notably, our method appears to be at least slightly better than other
methods even before the changeovers. In general, when we try to put the
GP prior on f(x, y) instead of ℒT(x), we may suffer from increased model
complexity; on the other hand, we are able to use C times more data
compared to when modeling ℒT(x). Additionally, squaring the error
between a response function and a target would result in a function with
more complex shapes. Hence, it seems that the benefits of modeling f(x,
y) using a GP prior outweigh the increased model complexity in these
specific examples.

Fig. 3 and Fig. 4 show detailed comparison of (1) BOMCT (2) EGO or
LCB, and (3) TPE or MSRBF using box plots. LCB seems to work
particularly well in optimizing the 2-D Ackley and Griewank functions

(Fig. 3e; Fig. 4b), while fails to minimize the Branin and 6-D Ackley
functions (Fig. 2a; Fig. 4e). More importantly, we can reaffirm that
BOMCT can reliably minimize the objectives before and after a
changeover across all test functions.

4.2.2. Systems with a large number of components
The simulated systems studied so far are comprised of three or five

components. However, it is likely that there are more of them in real
world applications. Therefore, we have increased the number of com-
ponents in a system to 20 in order to see if the performance of our
method is affected by the size of the system. Furthermore, we use a 2-
dimensional feature vector in the second example to analyze potential
impacts of the dimensionality of the feature.

Firstly, each of the 20 components is set to have a feature value that

Fig. 4. Detailed comparison of the rates of convergence on the 2-D and 6-D Ackley functions. The shown values are the results from 15 simulation runs. Read the
right axis in each plot for the values after the changeover.

J. Jeong and H. Shin

Computers & Industrial Engineering 157 (2021) 107310

10

is equidistantly distributed within the corresponding domain bound of
the test function. Then, the changeover is implemented by choosing 10
feature values and adding to them some random numbers sampled from
the standard normal distribution while ensuring the resulting features
remain inside the bounds. The 2-dimensional feature vectors are simi-
larly constructed. At the time of changeover, however, the first elements
of the feature vectors are randomly shuffled and then recombined with
the second elements that are also shuffled. This has resulted in 19 out of
20 feature vectors being changed.

Empirically, we have found that using larger values of ℒmin in the
computation of the EI (Algorithm 3) encourages the model to better
explore the design space. This is especially the case when a function lives
in a high dimensional space and objective values are small as in the 6-D
Ackley function.

The general trend indicated in Fig. 5a (1D-feature case) aligns with
the observations from the previous subsection. BOMCT turns out to be
more effective even before a changeover occurs, but improvement over
baselines is much clearer after the changeover.

Interesting results have been obtained from the 2D-feature case
(Fig. 5b). BOMCT not only reduces ℒT faster than other method-
s—before and after the changeover, but also achieves significantly better
values in the end. Some may argue that this is due in part to the small
number of initial samples given to the baselines at the changeover (3 in
our experiments). However, even if we give 12 initial samples for these
methods, it appears that a gap of the similar size still remains. As pointed
out previously, squaring the errors seems to have resulted in a more
complex, and possibly wiggly, function that a GP model cannot easily
learn. When the surrogate model is imprecise, it is reasonable to see that
the BO fails to find out the global optimum value.

This may also be the case in the first phase of the optimization in the
2D-feature case. An exhaustive grid search has found that the objective
function can decrease as low as around 87. However, all the sequential
methods (except for TPE) have found objective values that are slightly
above 100 in average. In such a case, one may attempt to use a covari-
ance kernel that is more suitable for the particular response function to
improve the performance.

We show detailed comparison of BOMCT and some baselines in
Fig. 6. As discussed, when the system has 2D features, the baselines are
unsuccessful in optimizing the function after the changeover; BOMCT
can effectively minimize the objective. Additionally, the vertical widths
of box plots indicate that BOMCT is much more reliable than other
methods in that there is less fluctuation across 15 runs. LCB (Fig. 6b) is
comparable to BOMCT in the 1D feature case, while MSRBF is better
than the standard BO methods in the 2D feature case.

5. Conclusion

In this paper, we have presented BOMCT—a novel Bayesian opti-
mization method for an expensive-to-evaluate multiple-component
system that has target values to satisfy. We have implied in Introduction
that a number of systems can potentially be formulated in this way.

Concretely, the sum of squared errors from the target values is set as
the objective function so that large deviations from the targets are
greatly penalized. Instead of placing a GP prior over the objective
function per se, we put the prior over the individual responses from the
components. We showed that this formulation enables us to model the
objective as the weighted sum of non-central chi-squared random vari-
ables, which in turn allows us to compute the expected improvement
acquisition function via quadrature. We have demonstrated the effec-
tiveness of BOMCT using four test functions. Overall, BOMCT can reli-
ably and efficiently find the optimal design parameters of the system
across all tested functions. In particular, our proposed method is much
more efficient than the standard BO methods in optimizing a system
whose components change over time. This has been validated by
comparing the rates of convergence of different methods on the test
functions.

Despite the improvements, the aggregated squared errors do not
allow us to incorporate specification limits (if any) which require re-
sponses to stay within some range containing the target values. Also, it
may not be an easy task to engineer feature vectors of a system in some
cases. Hence, future work could focus on how to force responses to occur
within pre-specified ranges. Also, the computation of quadrature using
‘CompQuadForm’ package in R cannot be vectorized currently, which
leads to longer running time for BOMCT. Once a more efficient tool
becomes available, it would be interesting to see how much more per-
formance gain we can obtain by computing the acquisition function with
increased granularity.

CRediT authorship contribution statement

Jihwan Jeong: Methodology, Formal analysis, Software, Writing -
original draft, Writing - review & editing. Hayong Shin: Conceptuali-
zation, Supervision, Funding acquisition, Resources.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Fig. 5. Comparison of the rates of convergence on the 6-D Ackley function with 20 components and different feature dimensions. The average obtained from 15
simulation runs is plotted with the standard errors as error bars.

J. Jeong and H. Shin

Computers & Industrial Engineering 157 (2021) 107310

11

Acknowledgements

This research was supported by Basic Science Research Program
through the National Research Foundation of Korea funded by the
Ministry of Science and ICT (2017R1A2B4006290).

References

Belakaria, S., Deshwal, A., & Doppa, J. R. (2019). Max-value entropy search for multi-
objective bayesian optimization. In Advances in Neural Information Processing Systems
(Vol. 32, pp. 7825–7835).

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter
optimization. In Advances in Neural Information Processing Systems (pp. 2546–2554).
Curran Associates, Inc.

Brochu, E., Cora, V. M., & de Freitas, N. (2010). A tutorial on bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv: 1012.2599.

Crombecq, K., Laermans, E., & Dhaene, T. (2011). Efficient space-filling and non-
collapsing sequential design strategies for simulation-based modeling. European
Journal of Operational Research, 214, 683–696. https://doi.org/10.1016/j.
ejor.2011.05.032

Duchesne, P., & de Micheaux, P. L. (2010). Computing the distribution of quadratic
forms: Further comparisons between the liu-tang-zhang approximation and exact
methods. Computational Statistics and Data Analysis, 54, 858–862.

Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv: 1807.02811.
Frazier, P., Powell, W., & Dayanik, S. (2009). The knowledge-gradient policy for

correlated normal beliefs. INFORMS Journal on Computing, 21, 599–613. https://doi.
org/10.1287/ijoc.1080.0314

GPy (2012). GPy: A gaussian process framework in python. http://github.com/Sheffi
eldML/GPy.

GPyOpt authors (2016). Gpyopt: A bayesian optimization framework in python. http://
github.com/SheffieldML/GPyOpt.

Ha, H.-T., & Provost, S. B. (2013). An accurate approximation to the distribution of a
linear combination of non-central chi-square random variables. REVSTAT Statistical
Journal, 11, 231–254.

Hennig, P., & Schuler, C. J. (2012). Entropy search for information-efficient global
optimization. Journal of Machine Learning Research, 13, 1809–1837.

Fig. 6. Detailed comparison of the rates of convergence on the 6-D Ackley function when there are 20 components in the system. The shown values are the results
from 15 simulation runs. Read the right axis in each plot for the values after the changeover.

J. Jeong and H. Shin

http://refhub.elsevier.com/S0360-8352(21)00214-X/h0005
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0005
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0005
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0010
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0010
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0010
https://doi.org/10.1016/j.ejor.2011.05.032
https://doi.org/10.1016/j.ejor.2011.05.032
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0025
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0025
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0025
https://doi.org/10.1287/ijoc.1080.0314
https://doi.org/10.1287/ijoc.1080.0314
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0050
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0050
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0050
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0055
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0055

Computers & Industrial Engineering 157 (2021) 107310

12

Hernandez-Lobato, D., Hernandez-Lobato, J., Shah, A., & Adams, R. (2016). Predictive
entropy search for multi-objective Bayesian optimization. In PMLR (pp. 1492–1501).

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13, 455–492.

Knowles, J. (2006). Parego: a hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems. IEEE Transactions on Evolutionary
Computation, 10, 50–66.

Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in Gaussian
processes: theory, efficient algorithms and empirical studies. Journal of Machine
Learning Research, 9, 235–284.

Mathai, A. M., & Provost, S. B. (1992). Quadratic forms in random variables: Theory and
applications. New York: Marcel Kekker Inc.

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21, 239–245.

Močkus, J. (1974). On bayesian methods for seeking the extremum. In Proceedings of the
IFIP Technical Conference (pp. 400–404). London, UK, UK: Springer-Verlag.

Picheny, V., Ginsbourger, D., Roustant, O., Haftka, R. T., & Kim, N.-H. (2010). Adaptive
designs of experiments for accurate approximation of a target region. Journal of
Mechanical Design, 132. https://doi.org/10.1115/1.4001873

Picheny, V., Gramacy, R. B., Wild, S., & Le Digabel, S. (2016). Bayesian optimization
under mixed constraints with a slack-variable augmented Lagrangian. In Advances in
Neural Information Processing Systems (Vol. 29, pp. 1435–1443).

Ranjan, P., Bingham, D., & Michailidis, G. (2008). Sequential Experiment Design for
Contour Estimation from Complex Computer Codes. Technometrics, 50, 527–541.
https://doi.org/10.1198/004017008000000541

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT
Press.

Regis, R., & Shoemaker, C. (2007). A stochastic radial basis function method for the
global optimization of expensive functions. INFORMS Journal on Computing, 19,
497–509. https://doi.org/10.1287/iioc.l060.0182

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing Systems
(Vol. 25, pp. 2951–2959).

Srinivas, N., Krause, A., Kakade, M. S., & Seeger, M. (2010). Gaussian process
optimization in the bandit setting: No regret and experimental design. arXiv:
0912.3995.

Surjanovic, S., & Bingham, D. (2017). Virtual library of simulation experiments: Test
functions and datasets. https://www.sfu.ca/ssurjano/optimization.html.

J. Jeong and H. Shin

http://refhub.elsevier.com/S0360-8352(21)00214-X/h0060
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0060
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0065
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0065
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0070
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0070
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0070
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0075
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0075
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0075
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0080
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0080
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0085
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0085
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0085
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0090
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0090
https://doi.org/10.1115/1.4001873
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0100
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0100
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0100
https://doi.org/10.1198/004017008000000541
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0110
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0110
https://doi.org/10.1287/iioc.l060.0182
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0120
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0120
http://refhub.elsevier.com/S0360-8352(21)00214-X/h0120
https://www.sfu.ca/ssurjano/optimization.html

	Bayesian optimization for a multiple-component system with target values
	1 Introduction
	2 Background
	2.1 Gaussian process regression (GPR)
	2.2 Surrogate modeling and Bayesian optimization
	2.3 Optimizing the sum of squared errors using Bayesian optimization

	3 Model description
	3.1 Overview
	3.2 The expected improvement acquisition function
	3.2.1 The squared sum of dependent Gaussian random variables
	3.2.2 The loss function as a quadratic form in Gaussian random variables

	3.3 Bayesian optimization scheme for a multiple-component system with a target vector (BOMCT)

	4 Numerical results
	4.1 Illustration of the proposed BO
	4.2 Comparison of rates of convergence
	4.2.1 Systems with a small number of components
	4.2.2 Systems with a large number of components

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

