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A B S T R A C T   

Bayesian optimization (BO) that employs the Gaussian process (GP) as a surrogate model has recently gained 
much attention in optimization of expensive black-box functions. In BO, the number of experiments necessary to 
optimize a function can be considerably reduced by sequentially selecting next design points that are optimal 
with respect to some sampling criterion. However, little research has been done to address the optimization of a 
multiple-component system where each component has a certain target value to meet. In this paper, we aim to 
find an optimal design parameter in the sense that the response function is close to the target value for every 
component. To this end, the squared errors from the targets are aggregated to produce an objective function. 
Instead of modeling this objective using GP as in the standard BO formulation, we place the GP prior over the 
response function. As a result, the distribution over the objective function follows that of the weighted sum of 
non-central chi-squared random variables (WSNC) due to the inter-dependency between responses. When 
components of the system are changed, the standard BO suffers inefficiency; however, our formulation enables us 
to retain a learned model, resulting in better efficiency. We compare the rates of convergence of different BO 
methods and other black-box optimization baselines using several test functions. The performance of our model 
is comparable to the standard BO when there is no change in the system, but the superiority of our method 
becomes clear when changes in the components occur.   

1. Introduction 

In modern mass production systems, batch processing is frequently 
used. It is quite a challenge to determine optimal process parameters for 
batch processing of heterogeneous parts (e.g. components of different 
shape and size). An interesting example of batch processing of multiple 
heterogeneous component is PCB (Printed Circuit Board) assembly 
process using SMT (Surface Mount Technology), which is a main 
workhorse in electronic appliance manufacturing. Briefly speaking, SMT 
process typically consists of the following three steps: (1) solder paste is 
printed on PCB, (2) chips are placed on the board, then (3) the board is 
fed into an oven for soldering. Step (1) and (3) are examples of batch 
processing of heterogeneous multiple components. If we focus on step 
(1) solder paste printing, each PCB has multiple locations, called pads, 
on which solder paste is transferred through apertures of a stencil mask. 
It is crucial to have the right amount of paste for each pad. In this case, 
each pad is a component, and the amount of solder paste printed on it is 
the process response, for which target value is given respectively. The 
process engineer wants to find the optimal process parameters for the 

solder paste printer. There are many other examples sharing the same 
characteristics (heterogeneous multiple components with the same kind 
of process response) in manufacturing or service systems. In many cases, 
we have to rely on experimental trials in order to find ‘good’ process 
parameters. 

When such a system is expensive-to-evaluate, how to design exper-
iments to find optimal parameters within fewest possible trials is of 
crucial importance. This has been successfully dealt with by Bayesian 
optimization (BO) for single-component systems (Hennig & Schuler, 
2012; Jones, Schonlau, & Welch, 1998; Snoek, Larochelle, & Adams, 
2012). The idea of BO is to build a surrogate model (e.g. Gaussian 
Process, GP) and use it to sequentially select next design parameters in 
an intelligent manner via maximization of an acquisition function. The 
BO framework has also been applied to optimize systems with target 
values. For example, Picheny, Ginsbourger, Roustant, Haftka, and Kim 
(2010) adaptively selected next designs in order to reduce the model 
uncertainty around a target value. Similarly, Ranjan, Bingham, and 
Michailidis (2008) tackled the contour estimation problem using the 
expected improvement as the acquisition function. 
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However, there has been little work on optimizing multiple- 
component systems with target values using BO methods. In principle, 
one could employ multi-objective BO methods (MOBO) by setting one 
objective per each component. The MOBO framework, however, is most 
useful when the objectives compete with one another, and the trade-off 
between them is critical (Knowles, 2006). Furthermore, state-of-the-art 
MOBO methods often assume that the objectives are independent of 
each other (Belakaria, Deshwal, & Doppa, 2019; Hernandez-Lobato, 
Hernandez-Lobato, Shah, & Adams, 2016). However, as we assume 
that process responses are of the same kind, making use of the de-
pendency between the responses from components turns out to be 
effective. Furthermore, unlike the multi-objective setting, the tradeoffs 
between objectives—related to responses from different compo-
nents—are not clear in the problem setting we consider. 

Hence, to avoid being overly-complicated, we rather opt for mini-
mizing the weighted sum of squared errors, with each error being incurred 
by one component due to a deviation from the assigned target value. 
Here, we assume that each component c of the system can be fully 
represented and uniquely determined by a feature vector yc. We further 
assume that the response from the component c is a scalar function of a 
controllable parameter vector x and the feature vector yc, i.e. f(x, yc)

where x ∈ RdX ,yc ∈ RdY , and f : RdX+dY →R. Then, the objective function 
is of the form below, 

ℒT(x) =
∑C

c=1
wc(f (x, yc) − Tc)2 (1)  

where wc denotes a weight given to the c-th component, T =

(T1,…,TC)
⊤ is the associated target vector, and C is the total number of 

components. 
Standard BO methods would place a GP prior over the objective 

ℒT(x). When a changeover—which we define as addition, removal or 
replacement of any components in the system—occurs, those methods 
suffer from loss of data and information obtained so far. This is because 
changes in components or target values induce the change in the 
objective function, and then the GP surrogate model approximating the 
previous objective function becomes no longer valid. 

In this paper, we develop a BO framework for multiple-component 
systems with target values, which can be reused when the system 
design is changed. The main technical contribution follows from the fact 
that we place a GP prior over the response f, namely the result of an 
experiment from each component. Then, we show that the objective 
function ℒT(x) follows the distribution of a weighted sum of non-central 
chi-squared random variables (WSNC) from our modeling assumption. 
This understanding enables us to define and compute the expected 
improvement (EI) acquisition function, which in turn helps us sequen-
tially find the global optimum of ℒT(x). 

We review Gaussian Process Regression and Bayesian Optimization 
in Section 2. Then, we propose our novel BOMCT method (Bayesian 
Optimization for a Multiple-Component system with Target values) in 
Section 3. With a few commonly used simulated test functions, we 
demonstrate the validity and effectiveness of our method. The optimi-
zation process of the Branin test function is illustrated in Section 4.1, 
followed by the results comparing the rates of convergence of different 
methods on several test functions (Section 4.2). As substantiated by the 
results, our method not only quickly reduces objective function values 
but also outperforms other methods—in terms of the number of itera-
tions needed—when some components of the system are changed. 

2. Background 

2.1. Gaussian process regression (GPR) 

A Gaussian process (GP), which defines a distribution over functions, 
can be fully described by its mean and covariance function, that is, 

f (x) ∼ 𝒢℘(m(x), k(x, x′)) (2)  

Here, k(x, x′) is a positive definite covariance function also known as a 
kernel. The mean function, m(x), is usually set to the zero vector because 
we are interested in the posterior distribution rather than the prior in 
most cases. 

After observing data D = {X,t} = {(xi,ti)|i = 1,…,n}, we obtain the 
predictive distribution as the conditional distribution of f* at test points 
X* given t. Since this is also Gaussian, it can be put as follows (Ras-
mussen & Williams, 2006): 

f*|X*,X, t ∼ 𝒩(f*, cov(f*)) (3)  

cov(f*) = K(X*,X*) − K(X*,X)[K(X,X) + σ2
nI]

− 1K(X,X*)

f* = E[f*|X, t,X*] = K(X*,X)[K(X,X) + σ2
nI]

− 1t
(4)  

An independent noise ε ∼ 𝒩(0, σ2
n) is assumed here, resulting in 

t = f(X)+∊ ∼ 𝒢℘(0, k′

(⋅, ⋅)) where k′(xi,xj) = k(xi,xj) + σ2
nδij, with σij =

1 if i = j or 0 otherwise. 
At a test point x*, the predictive distribution gives an estimator of the 

function value as f*, and the uncertainty is quantified by cov(f*). 
Although the accuracy of prediction largely depends on the selection of 
kernel function and its hyperparameters, GPR is by far the most 
preferred surrogate in BO due to its flexibility as well as tractability 
(Krause, Singh, & Guestrin, 2008; Snoek et al., 2012). More compre-
hensive treatment of GPR can be found in Rasmussen and Williams 
(2006). 

2.2. Surrogate modeling and Bayesian optimization 

Consider the optimization problem of a scalar objective function J :

Rd→R defined on a d-dimensional continuous domain, 𝒳 . When J in-
dicates the result of some expensive experiment, then direct optimiza-
tion methods requiring a number of function evaluations are 
prohibitive. As such, we may resort to methods which employ a surro-
gate model that approximates the original function while requiring far 
less computation in optimizing it (Crombecq, Laermans, & Dhaene, 
2011). 

That being said, we can roughly describe the BO methodology as a 
surrogate-based optimization scheme that harnesses convenient features 
of the Gaussian distribution in optimizing a complex function. Frazier 
(2018) has summarized the common properties of objective functions 
that are relevant to BO, and some of them are presented below:  

1. J is an expensive function requiring a considerable amount of costs to 
evaluate; hence, the number of possible evaluations of the function is 
limited.  

2. J is a black-box function in the sense that it lacks a known structure 
(e.g. concavity) and analytic form that would otherwise simplify the 
optimization.  

3. Often, no information except the values of observed J is available. 
Thus, the first and second-order optimization methods cannot be 
used. 

Due to (ii) and (iii), we are left with derivative-free methods. In 
addition, the number of function evaluations should be minimized in 
order to account for (i). BO addresses these issues by (1) using a GP 
model as a surrogate for J, (2) sampling based on some criterion 
computed from the posterior distribution of the GP, (3) finally, 
sequentially updating the posterior distribution. This sampling criterion 
is called an acquisition function. The general schematic description of 
BO is summarized below in Algorithm 1. 

Algorithm 1. General Scheme of BO (Frazier, 2018)  

The most popular choice of acquisition function is the expected 
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improvement (EI), which was proposed by Močkus (1974) and later 
popularized by Jones et al. (1998). The ‘improvement’ at a point x at the 

nth iteration of BO is defined as In(x) =
[
Jmin

n − Ĵ(x)
]+

. Note that Ĵ 

denotes a GP surrogate model, Jmin
n is the minimum objective value 

observed so far, and [⋅]+ is the positive part of a value inside the brackets. 
This improvement is a random variable because of Ĵ; therefore, we take 
the expectation under the posterior distribution on J and obtain a real- 
valued score. 

It is easy to see that the expected improvement at the nth step, EIn(x), 
is:  

where Z =
f(x)− μ(x)
σ(x) ∼ 𝒩 (0, 1), and ϕ,Φ refer to the density and distri-

bution functions of the standard normal distribution, respectively 
(Brochu, Cora, & de Freitas, 2010). This acquisition automatically bal-
ances the exploitation and exploration. To see this, note that the EI is 
large when μ(x) is small or σ(x) is large. In other words, the EI exploits 
current estimation by giving a high score to x when μ(x) is small, while it 
also encourages points that are located in a less-explored region with 
high σ(x) to be sampled. 

2.3. Optimizing the sum of squared errors using Bayesian optimization 

As described in Section 1, we often want a multiple-component 
system to output a result in which f(x, yc) is close to a certain target 
Tc. In the common BO setting, we simply place a GP prior on ℒT(x) of Eq. 
1 and follow Algorithm 1 accordingly. 

This approach is efficient only when it is guaranteed that the com-
ponents of the system are not changing at all times. In reality, however, 
they can be frequently replaced with different ones. When yc changes, so 
does f(x, yc), which in turn alters the objective function ℒT(x). This 
implies that we have to learn ℒT(x) all over again, leading to critical 

inefficiency. That is, when yc changes, we have no choice but to discard 
the information collected so far if we model ℒT(x) with a GP surrogate. 

In Section 3, we instead directly model the response function f(x, y)
using a GP surrogate and subsequently optimize ℒT(x) under the guid-
ance of an appropriately developed acquisition function. This proposed 
method retains efficiency even if the features yc change. That way, we 
can utilize the information—obtained from the experiments performed 
with one set of components—in optimizing the parameters of the 
multiple-component system with another set of components. 

3. Model description 

3.1. Overview 

As noted in previous sections, we are interested in optimizing a 
black-box multiple-component system that is expensive-to-evaluate. Let 
the function f : RdX+dY →R represent scalar outputs of evaluations con-
ducted on this system. We assume that f depends on two kinds of vari-
ables: x and y. The design parameter x ∈ 𝒳⊂Rd

X is the one that we would 
like to optimize, whereas y ∈ 𝒴⊂Rd

Y is the variable that uniquely and 
fully represents each component. In other words, each component c has 
one yc vector that is fixed for the component unless otherwise 
mentioned. 

In this paper, we adjust the design parameter x such that the response 
from a component c gets close to a certain target Tc for all c (c = 1,…,C). 
That is to say, we would like |f(x, yc) − Tc| to be small. Naturally, we can 
set up a loss function by summing up the squared errors from the cor-
responding targets at all components. This loss function will signifi-
cantly penalize large deviations from the targets. A diagonal weight 
matrix diag(w)—that is user-defined and assumed to adequately reflect 
the importance of each component—is introduced because we are 
aggregating all errors. Additionally, with the response vector f(x) =

E[In(x)] = En[max(0, Jmin
n − Ĵ(x))|𝒟n, x] =

⎧
⎨

⎩

(Jmin
n − μ(x))Φ(Z) + σ(x)ϕ(Z) , if σ(x) > 0

0 , otherwise
(5)   
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[
f(x, y1),…, f(x, yC)

]⊤, the target vector T = [T1,…,TC], and the C × C 
identity matrix I, we can reiterate Eq. 1 in vectorized form, 

ℒT(x) =
∑C

c=1
wc(f (x, yc) − Tc)2

= (f(x) − T)⊤ diag(w) (f(x) − T) (6)  

Then, we put a GP prior on f(x,y): 

f̂ (x, y) ∼ 𝒢℘(m(x, y), k((x, y), (x′, y′))) (7) 

Note that hereafter the GP model is denoted as f̂ , while the actual 
response function is f. Similarly, ℒ̂T denotes the loss function induced by 
f̂ . We can see that an experiment at one design point x yields C re-
sponses, i.e. f(x) =

[
f(x, y1),…, f(x, yC)

]⊤, which are then combined to 
give one ℒT(x) value. After having experimented at n different design 
points (x1, …, xn), we have the dataset Dn = {X, f}, where X is a 
nC × (dX +dY) input matrix and f = [f⊤(x1),…, f⊤(xn)]

⊤
∈ RnC×1 is the 

response vector. 
Given the GP prior (Eq. 7) and the dataset Dn, the posterior distri-

bution at some query point x* is similarly computed as in Eq. 3 and Eq. 4. 
One critical difference is that we should always consider the predictive 
distribution for all C responses. Thus, we augment x* with {yc}

C
c=1 to 

obtain a C × (dX +dY) query matrix X*: 

X* =

⎡

⎣
x* y1
⋮ ⋮
x* yC

⎤

⎦ (8)  

Then, the predictive distribution at x* forms a multivariate normal dis-
tribution defined as follows (assuming identical Gaussian noise, σ): 

f̂(x*)|X*,X, f ∼ 𝒩(μ*,Σ*)μ* = K(X*,X)
[
K(X,X) + σ2I

]− 1f ∈ RC×1Σ* 

= K(X*,X*) − K(X*,X)
[
K(X,X) + σ2I

]− 1K(X,X*) ∈ RC×C (9) 

Since we are minimizing ℒT(x) in Eq. 6, the improvement at x* is 

defined as In(x*) =
[
ℒmin

n − ℒ̂T(x*)
]+

, where ℒmin
n denotes the minimum 

loss we have obtained until the nth iteration. In the standard BO, ℒ̂T(x*)

is modeled by a GP prior. In this case, the expected improvement is 
straightforward to compute (Section 2.2). When we place a GP prior on 
the response function, however, ℒ̂T(x*) becomes a quadratic form in the 
Gaussian random variables of Eq. 9 associated with the diagonal weight 
matrix diag(w). Because f(x*, yc) are all correlated as per Σ*, ℒ̂T(x*) does 
not follow the non-central chi-squared distribution. 

In the following subsection, we show that ℒ̂T(x*) follows the distri-
bution of a weighted sum of non-central chi-squared random variables 
(WSNC) and present a method to compute the expected improvement of 
the random variable. 

3.2. The expected improvement acquisition function 

Suppose that Q is a continuous non-negative random variable that 
has a differentiable cumulative function (cdf) FQ and the density func-
tion (pdf) q. If we define an improvement of Q with respect to Qmin as I =

max{0,Qmin − Q}, then the expected improvement can be computed as 
follows: 

EIQ = EQ[I] = EQ

[(
Qmin − Q)⋅1Qmin⩾Q

]

= Qmin⋅P(Q⩽Qmin) −

∫ Qmin

0
t⋅q(t)dt

= Qmin⋅FQ(Qmin) − [t⋅FQ(t)]Qmin
0 +

∫ Qmin

0
FQ(t)dt =

∫ Qmin

0
FQ(t)dt

(10)  

This result indicates that the expected improvement of the random 

variable Q boils down to the one-dimensional definite integral of the cdf 
of Q. Hence, the cdf of ℒ̂T(x*) would suffice to compute the expected 
improvement at any query point x*. 

3.2.1. The squared sum of dependent Gaussian random variables 
Let Y denote an m-dimensional multivariate Gaussian random vector 

whose mean vector and positive definite covariance matrix are μ and Σ, 
respectively. Then, Q = Y⊤AY is called the quadratic form in Y associated 
with a symmetric matrix A. We can show that Q becomes the weighted 
sum of non-central chi-squared random variables (WSNC) (Ha & Pro-
vost, 2013; Mathai & Provost, 1992). 

Proof. Define a random vector Z = L− 1(Y − μ), where L is the lower 
triangular matrix from the Cholesky decomposition of Σ = LL⊤. Then, 
we see that Z ∼ 𝒩(0, I), with an m × m identity matrix I. By putting 
Y = L(Z+L− 1μ) into Q = Y⊤AY, we get the following: 

Q = Y⊤AY = (Z + L− 1μ)⊤L⊤AL(Z + L− 1μ)
= (Z + L− 1μ)⊤PΛP⊤(Z + L− 1μ) (11)  

= (P⊤Z + P⊤L− 1μ)⊤Λ(P⊤Z + P⊤L− 1μ)
= (U + δ)⊤Λ(U + δ)

(12)  

=
∑m

i=1
λi(Ui + δi)2

=
∑m

i=1
λiχ2(δ2

i )
(13)  

In Eq. 11, the orthogonal diagonalization of the symmetric matrix L⊤AL 
yields the orthogonal matrix P and the diagonal matrix Λ whose ele-
ments (λi) are the eigenvalues. Subsequently, U = P⊤Z ∼ 𝒩(0, I) and δ =

P⊤L− 1μ are introduced in Eq. 12. It can be easily checked that the 
random vector U indeed follows the multivariate standard normal dis-
tribution as below, 

E[U] = P⊤E[Z] = 0
Cov(U) = E[UU⊤] = E[P⊤ZZ⊤P] = P⊤E[ZZ⊤]P = P⊤P = I  

This means that all the elements of U are independent. Simply expanding 
the matrix multiplication in Eq. 12 gives Eq. 13. Then, we can see that 
(Ui + δi)

2 is the non-central chi-squared random variable with the non- 
centrality parameter δi, where Ui and δi denote the ith element of U and 
δ, respectively. □ 

3.2.2. The loss function as a quadratic form in Gaussian random variables 
Suppose that we have the dataset Dn = {X, f} and the GP model f̂ (⋅,

⋅), as described in Section 3.1. When a candidate design x* is given, the 
predictive distribution over the response from each of C components is 
specified by Eq. 9. Also, the distribution over the loss function Eq. 6 is 
specified by the random variable induced by f̂(x*): 

ℒ̂T(x*) =
(

f̂(x*) − T
)⊤

diag(w)
(

f̂(x*) − T
)

(14)  

Then, ℒ̂T(x*) follows the distribution of the WSNC random variable, 
whose parameters are λc and δc: 

ℒ̂T(x*) =
∑C

c=1
λcχ2(δ2

c) (15)  

This result is a straightforward application of the analysis given in 

Section 3.2.1, recognizing that 
[

f̂(x*) − T
]
∼ 𝒩(μ′,Σ′) where μ′ = μ* − T 

and Σ′ = Σ* are from Eq. 9. Consequently, we obtain λc and δc from Σ′ =

LL⊤,L⊤diag(w)L = PΛP⊤, and δ = P⊤L− 1μ′ . 
Although there is no analytic form of the cdf for the WSNC random 

variable, several computing libraries provide numerical tools of 
approximation (Duchesne & de Micheaux, 2010). Because Eq. (10) is a 
definite integral of the cdf, it can be easily obtained via quadrature 
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(Picheny, Gramacy, Wild, & Le Digabel, 2016). 

Algorithm 2. BOMCT, optimizing a multiple-component system via 
BO  

3.3. Bayesian optimization scheme for a multiple-component system with 
a target vector (BOMCT) 

Algorithm 2 summarizes BOMCT. We have described in Section 3.2 
how to compute the expected improvement acquisition function at every 
candidate design point x* at the nth iteration step (EIn(x*)), which is 
detailed in Algorithm 3. 

Note that changes in components or target values can be easily 
accommodated while we also retain the learned GP model. When 
components have changed, then we just need to augment the new 
feature vector {ynew

c }
Cnew
c=1 . If we want to optimize the system with 

different target values, a new target vector T is simply subtracted from 
μ* in Algorithm 3. Different weight vectors can also be applied with little 
effort. 

Algorithm 3. Computing EIn(x*) at the nth iteration   
Input Minimum loss observed so far (ℒmin

n ) Feature vectors of C components (
{

yc
}C

c=1) 
Target vector (T) and weight vector (w) Dataset (Dn = {X, f}) and a query location 
(x*)  

Augment x* with {yc}
C
c=1,  

xaug
* ←[(x*, y1)

⊤
,…, (x*, yC)

⊤
]
⊤

Compute the GP predictive mean (μ*) and covariance (Σ*) using Eq. 9  
Perform Cholesky decomposition on Σ*,  

Σ* = LL⊤

Compute parameters of the WSNC random variable, 
L⊤diag(w)L = PΛP⊤; δ = P⊤L− 1μ′

Return EIn(x*) =
∫ ℒmin

n
0 F

ℒ̂T
(t)dt using δ and Λ via quadrature    

4. Numerical results 

In this section, we present the results of numerical simulations on 

some popular test functions to validate BOMCT. Firstly, we visualize the 
optimization process of the Branin function using the proposed method 
in Section 4.1. Then, the rates of convergence of several baselines are 
compared on four simulated test functions (Section 4.2). In Section 

4.2.1, the systems consist of a small number of components, where each 
component has a one-dimensional feature value y. In Section 4.2.2, we 
examine the effect of the number of components using the 6-D Ackley 
function. In this experiment, each component has either a 1-dimensional 
or 2-dimensional feature. 

The test functions are treated as a black box throughout the simu-
lations, which means that we do not have access to the functional forms 
of the underlying response function. Moreover, the functions are 
assumed to be expensive-to-evaluate; therefore, our primary goal is to 
minimize the objective as fast as possible. 

Simulations are conducted in Python using the libraries ‘GPy’ and 
‘GPyOpt’ (GPy, 2012; GPyOpt authors, 2016). After sampling from the 
initial design points or whenever a new observation is made, the 
hyperparameters of any GP models are re-estimated via maximum 
likelihood estimation (MLE). Since the distribution function of WSNC is 
not available in Python, we use the ‘rpy2’ library to utilize the ‘Comp-
QuadForm’ package from R (Duchesne & de Micheaux, 2010) as well as 
the implementation done in Picheny et al. (2016). 

4.1. Illustration of the proposed BO 

We first illustrate the patterns of the proposed acquisition function 
with respect to not only the objective function but also the true response 
function and its GP surrogate model. We use the Branin function for this 
purpose defined as below (Surjanovic & Bingham, 2017): 

f (x, y) = a(y − bx2 + cx − r)2
+ s(1 − t) cos(x)+ s (16)  

where a = 1,b = 5.1/(4π2),c = 5/π,r = 6,s = 10, and t = 1/8π. Here, 
the design variable subject to optimization is x. 

As mentioned in Frazier, Powell, and Dayanik (2009) and indicated 
in Algorithm 1, some initial designs are necessary for the estimation of 
the hyperparameters of the GP model in the beginning. In the case of the 
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Branin function, initial evaluations have been made at three randomly 
chosen points. Other experimental settings used in this example are 
identical to those used in Section 4.2.1, which is reported in Table 1. 
Two out of three feature values are changed after 4 iterations to examine 
how the acquisition function behaves subject to such changes and 
whether the new optimum can be found quickly. 

Fig. 1a: In the first two iterations, the acquisition is large where the 
uncertainty of the GP model is high. Furthermore, when the GP pre-
dictive means of components are closer to the target value, the acqui-
sition tends to be higher. Only 6 function evaluations, including those at 
three initial designs, are enough for the model to accurately pick out the 
global optimum of the objective function. 

As mentioned repeatedly, it is not unusual that one or more com-
ponents in a multiple-component system are changed (termed ‘change-
over’). When there is a changeover in the system, we now need to 
optimize a different objective function as the underlying response 

function has changed (Fig. 1a). Note that after the changeover, one 
function evaluation is conducted at the previously sampled point. 

In the leftmost figure of Fig. 1b, the GP predictive variances corre-
sponding to the changed y are large (purple and green lines). The GP 
model is almost certain about the true response functions near the lower 
bound since the function has been evaluated around there, whereas 
large predictive variances are observed where the optimum lies. The 
acquisition peaks at two design points: one at which the GP mean in-
dicates the objective to be small, and the other at which the GP variances 
are high as well as GP means are relatively close to the target value. 

Even though the objective function has changed, it only takes few 
more iterations to figure out the new optimum, thanks to the previously 
trained GP model (Fig. 1b). Observe also that we do not have to sample 
from a certain interval in the middle, which saves resources that would 
otherwise be wasted. 

Table 1 
Experimental settings: dX and dY are the dimensionality of the design variable and the feature vector, respectively. ncomp is the number of components. The Matérn 52 
kernel is used for GP models in BOMCT throughout all simulations. Details are described in the main text regarding how the feature vectors are chosen.  

Test function Target dX  dY  ncomp  Domain Covariance Kernel 

Branin 100 1 1 3 (-5,10) 
(1, 15) 

Matérn 52 

6-D Ackley 5 4 or 5 2 or 1 3 or 20 (− 5, 5)6  

2-D Ackley 5 1 1 5 (− 5, 5)2  

2-D Griewank 2 1 1 5 (− 5, 5)2   

Fig. 1. Illustration of BOMCT. The 
objective function (black dotted line) 
and the acquisition (red line, in arbi-
trary units) are plotted together. 
Shown below are the target value 
(horizontal dotted line, set at 100); the 
true response functions (dotted lines of 
different colors) and their corre-
sponding GP predictive means (solid 
lines of matching colors); the 95% 
credible regions as shaded parts. 
Sampled points are drawn as triangles 
on x axis. The red triangles indicate 
where the latest function evaluation 
has been made.   
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4.2. Comparison of rates of convergence 

We now investigate how BOMCT performs compared to some base-
lines. The compared methods are as follows:  

• Latin Hypercube Sampling (LHS) (McKay, Beckman, & Conover, 
1979) is a fixed space-filling experimental design where design 
points are randomly sampled. This method is inherently non- 
sequential and fixes all evaluation points prior to starting 
experiments.  

• EGO (Jones et al., 1998) is a standard BO method which uses the 
expected improvement as the acquisition function.  

• LCB (Srinivas, Krause, Kakade, & Seeger, 2010) is another standard 
BO method which uses the lower confidence bound as the acquisition 
function.  

• ES (Hennig & Schuler, 2012) is a relatively recent standard BO 
method which uses the entropy search as the acquisition function. 

• MSRBF (Regis & Shoemaker, 2007) is a sequential black-box opti-
mization method that relies on using the RBF function as a surrogate 
model.  

• Tree-structured Parzen Estimator (TPE) (Bergstra, Bardenet, Bengio, 
& Kégl, 2011) is a method which is often used in hyperparameter 
optimization of expensive machine learning algorithms. 

By the standard BO, we mean the BO methods that model the 
objective function in Eq. 6 directly as a GP surrogate and then follow 

Algorithm 1 while using EI, LCB or ES as the acquisition function. 
We compare the rates of convergence simulated on four different test 

functions. The settings of the simulations are specified in Table 1. For 
simplicity, we assume that every component has an equal weight value. 
As clearly stated, our goal is to minimize the objective function with 
fewest possible function evaluations. Thus, we record the best (i.e., the 
smallest) ℒT values obtained until each iteration during optimization. 

After initial designs, a model chooses 25 more samples before a 
changeover at which some or all components of the system are changed. 
At the changeover, a small number of evaluations are made before 
restarting the optimization process (three in the 6-D Ackley function and 
one in the other functions). This is especially done for the standard BO 
methods and MSRBF since they require initial designs to start with. 
Additionally, we have reset the best ℒT value at the changeover since the 
objective function is changed. 

For each compared method and test function, we have conducted 15 
simulation runs with different initial designs for each run; however 
within each run, all methods start with the same initial samples for fair 
comparison. We plot means and standard errors of all methods over the 
optimization iterations. Also, we present box plots comparing BOMCT, 
EGO and MSRBF in more detail. 

4.2.1. Systems with a small number of components 
The test functions examined in this study are the Branin, 6-D Ackley, 

2-D Ackley and 2-D Griewank functions (see Table 1). We refer readers 
to Surjanovic and Bingham (2017) for the exact definitions of these 

Fig. 2. Comparison of the rates of convergence. The average of the best objective values from 15 simulation runs is plotted along with corresponding standard errors. 
Read the right axis in each plot for the values after the changeover. 
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functions. For BOMCT, the Matérn 52 kernel function is used, while the 
squared exponential (SE) or the Matérn 52 kernels are used in the 
standard BO baselines. Note that the last one or two dimensions of the 
test functions are used for feature vectors yc. 

We manually select the feature vectors for the test functions when 
there are 3 components; the vectors are chosen randomly when there are 
more than 5 components. The feature values in the Branin function 
change from (3.2, 5.5, 10.0) to (5.5, 9.0, 12.5). In the 6-D Ackley 
function with 1-dimensional feature, (-1.0, 0, 1.0) and (-1.0, 2.0, 3.5) are 
used before and after the changeover, respectively. For the test functions 
with 5 components, 3 out of 5 features are changed at the changeover. 

Fig. 2 shows the results of the experiments. Note that the best ℒT 
values soar to different levels when a new set of features is applied to the 
multiple-component system. This is ascribed to the fact that the 

objective function has changed and that the first evaluation after the 
changeover is made at the latest design point, which would be different 
for different methods. 

In general, we can observe superiority of the sequential methods over 
the fixed design, i.e., LHS. Especially, BOMCT performs nicely across all 
the test functions. In the 2-D Griewank function, the optima before and 
after the changeover are located in the vicinity, leading to fast optimi-
zation among the sequential methods. Hence, the improvement of 
BOMCT is only marginal. The performance gain is particularly con-
spicuous when it comes to the rates of convergence after the change-
overs. For example, in Fig. 2d, shortly after the three samples given to all 
methods for adaptation to the changeover, BOMCT approaches the new 
optimum at once. In contrast, ES, LCB and EGO have effectively failed to 
minimize the objective within the available experimental budget. 

Fig. 3. Detailed comparison of the rates of convergence on the Branin and 2-D Griewank functions. The shown values are the results from 15 simulation runs. Read 
the right axis in each plot for the values after the changeover. 
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MSRBF, on the other hand, proves to be quite useful in optimizing the 6- 
D Ackley function. 

Notably, our method appears to be at least slightly better than other 
methods even before the changeovers. In general, when we try to put the 
GP prior on f(x, y) instead of ℒT(x), we may suffer from increased model 
complexity; on the other hand, we are able to use C times more data 
compared to when modeling ℒT(x). Additionally, squaring the error 
between a response function and a target would result in a function with 
more complex shapes. Hence, it seems that the benefits of modeling f(x,
y) using a GP prior outweigh the increased model complexity in these 
specific examples. 

Fig. 3 and Fig. 4 show detailed comparison of (1) BOMCT (2) EGO or 
LCB, and (3) TPE or MSRBF using box plots. LCB seems to work 
particularly well in optimizing the 2-D Ackley and Griewank functions 

(Fig. 3e; Fig. 4b), while fails to minimize the Branin and 6-D Ackley 
functions (Fig. 2a; Fig. 4e). More importantly, we can reaffirm that 
BOMCT can reliably minimize the objectives before and after a 
changeover across all test functions. 

4.2.2. Systems with a large number of components 
The simulated systems studied so far are comprised of three or five 

components. However, it is likely that there are more of them in real 
world applications. Therefore, we have increased the number of com-
ponents in a system to 20 in order to see if the performance of our 
method is affected by the size of the system. Furthermore, we use a 2- 
dimensional feature vector in the second example to analyze potential 
impacts of the dimensionality of the feature. 

Firstly, each of the 20 components is set to have a feature value that 

Fig. 4. Detailed comparison of the rates of convergence on the 2-D and 6-D Ackley functions. The shown values are the results from 15 simulation runs. Read the 
right axis in each plot for the values after the changeover. 
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is equidistantly distributed within the corresponding domain bound of 
the test function. Then, the changeover is implemented by choosing 10 
feature values and adding to them some random numbers sampled from 
the standard normal distribution while ensuring the resulting features 
remain inside the bounds. The 2-dimensional feature vectors are simi-
larly constructed. At the time of changeover, however, the first elements 
of the feature vectors are randomly shuffled and then recombined with 
the second elements that are also shuffled. This has resulted in 19 out of 
20 feature vectors being changed. 

Empirically, we have found that using larger values of ℒmin in the 
computation of the EI (Algorithm 3) encourages the model to better 
explore the design space. This is especially the case when a function lives 
in a high dimensional space and objective values are small as in the 6-D 
Ackley function. 

The general trend indicated in Fig. 5a (1D-feature case) aligns with 
the observations from the previous subsection. BOMCT turns out to be 
more effective even before a changeover occurs, but improvement over 
baselines is much clearer after the changeover. 

Interesting results have been obtained from the 2D-feature case 
(Fig. 5b). BOMCT not only reduces ℒT faster than other method-
s—before and after the changeover, but also achieves significantly better 
values in the end. Some may argue that this is due in part to the small 
number of initial samples given to the baselines at the changeover (3 in 
our experiments). However, even if we give 12 initial samples for these 
methods, it appears that a gap of the similar size still remains. As pointed 
out previously, squaring the errors seems to have resulted in a more 
complex, and possibly wiggly, function that a GP model cannot easily 
learn. When the surrogate model is imprecise, it is reasonable to see that 
the BO fails to find out the global optimum value. 

This may also be the case in the first phase of the optimization in the 
2D-feature case. An exhaustive grid search has found that the objective 
function can decrease as low as around 87. However, all the sequential 
methods (except for TPE) have found objective values that are slightly 
above 100 in average. In such a case, one may attempt to use a covari-
ance kernel that is more suitable for the particular response function to 
improve the performance. 

We show detailed comparison of BOMCT and some baselines in 
Fig. 6. As discussed, when the system has 2D features, the baselines are 
unsuccessful in optimizing the function after the changeover; BOMCT 
can effectively minimize the objective. Additionally, the vertical widths 
of box plots indicate that BOMCT is much more reliable than other 
methods in that there is less fluctuation across 15 runs. LCB (Fig. 6b) is 
comparable to BOMCT in the 1D feature case, while MSRBF is better 
than the standard BO methods in the 2D feature case. 

5. Conclusion 

In this paper, we have presented BOMCT—a novel Bayesian opti-
mization method for an expensive-to-evaluate multiple-component 
system that has target values to satisfy. We have implied in Introduction 
that a number of systems can potentially be formulated in this way. 

Concretely, the sum of squared errors from the target values is set as 
the objective function so that large deviations from the targets are 
greatly penalized. Instead of placing a GP prior over the objective 
function per se, we put the prior over the individual responses from the 
components. We showed that this formulation enables us to model the 
objective as the weighted sum of non-central chi-squared random vari-
ables, which in turn allows us to compute the expected improvement 
acquisition function via quadrature. We have demonstrated the effec-
tiveness of BOMCT using four test functions. Overall, BOMCT can reli-
ably and efficiently find the optimal design parameters of the system 
across all tested functions. In particular, our proposed method is much 
more efficient than the standard BO methods in optimizing a system 
whose components change over time. This has been validated by 
comparing the rates of convergence of different methods on the test 
functions. 

Despite the improvements, the aggregated squared errors do not 
allow us to incorporate specification limits (if any) which require re-
sponses to stay within some range containing the target values. Also, it 
may not be an easy task to engineer feature vectors of a system in some 
cases. Hence, future work could focus on how to force responses to occur 
within pre-specified ranges. Also, the computation of quadrature using 
‘CompQuadForm’ package in R cannot be vectorized currently, which 
leads to longer running time for BOMCT. Once a more efficient tool 
becomes available, it would be interesting to see how much more per-
formance gain we can obtain by computing the acquisition function with 
increased granularity. 
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