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Abstract Designing effective mitigation strategies against influenza outbreak

requires an accurate prediction of a disease’s future course of spreading. Real time

information such as syndromic surveillance data and influenza-like-illness (ILI)

reports by clinicians can be used to generate estimates of the current state of

spreading of a disease. Syndromic surveillance data are immediately available, in

contrast to ILI reports that require data collection and processing. On the other hand,

they are less credible than ILI data because they are essentially behavioral responses

from a community. In this paper, we present a method to combine immediately-

available-but-less-reliable syndromic surveillance data with reliable-but-time-

delayed ILI data. This problem is formulated as a non-linear stochastic filtering

problem, and solved by a particle filtering method. Our experimental results from

hypothetical pandemic scenarios show that state estimation is improved by utilizing

both sets of data compared to when using only one set. However, the amount of

improvement depends on the relative credibility and length of delay in ILI data. An

analysis for a linear, Gaussian case is presented to support the results observed in

the experiments.

Keywords Epidemic � Syndromic surveillance � Particle filter � Data fusion

1 Introduction

Designing containment and mitigation strategies upon an epidemic outbreak is of

critical public health interest. Typical examples of mitigation strategies include
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clinical interventions (e.g., mass vaccination) and non-clinical interventions (e.g.,

social distancing) (Ferguson et al. 2005; WHO 2013). All of these strategies incur

significant direct and indirect costs to society, and it is therefore important to

develop the most effective strategy possible against epidemic outbreaks. Designing

mitigation strategies may be done in a preparatory planning phase or in real-time.

For preparatory planning, a hypothetical scenario of an epidemic outbreak is

assumed and the effectiveness of various containment strategies is assessed.

Understanding gained from these analyses is used to develop epidemic disease

response plans, such as securing flu vaccines and antiviral stockpiles. In real-time

decision making, public health authorities predict the progress of disease spread

based on its current state. If the prediction warrants intervention, action plans such

as vaccination campaigns or school closures are quickly developed and executed.

The crucial components to a successful response to a disease outbreak are

quickly detecting an outbreak of an epidemic and accurately predicting the future

course of spreading of the disease. Early detection of a disease outbreak is known to

have a critical impact on the effectiveness of mitigation efforts (Ferguson et al.

2005; Gensheimer et al. 1999; Longini et al. 2005), and there has been much

research work on detecting outbreaks of epidemic diseases [e.g., Dukic et al. (2012),

Que and Tsui (2011), Reis et al. (2007), Singh et al. (2010)]. Following the

detection of a disease outbreak, the magnitude and speed of the spread of an

epidemic should be accurately estimated for public health authorities to develop

mitigation strategies. In particular, two quantities are important indicators for

potential impact of an epidemic: Ipeak and Tpeak. Ipeak is the maximum number of

simultaneously infected persons in the community. Tpeak is the time (e.g., x days

after the outbreak) of the peak infection.

Prediction of the future course of disease spread requires a high-fidelity disease

spread model that, given the current state of spread of an epidemic, produces

quantitative estimates on how rapid and severe the epidemic will be. Largely, there

are two approaches to model the spreading of an epidemic disease: equation-based

models and simulation-based models. In equation-based models, a community

consists of a few subpopulation groups, each of which corresponds to different

stages of a disease. Disease spreading in a community is then modeled by the flows

of population from one group to another, and a set of differential equations is used

to compute the change of the population size in each group. The classic equation-

based models assume that the underlying population is homogeneous and well-

mixed, describing the overall dynamics in an average sense. Many variants have

been developed, and Hethcote (2000) provides a comprehensive review of equation-

based epidemic models. The other stream of disease spreading models use

simulation as their basis [e.g., Bisset et al. (2009), Chao et al. (2010), Eubank et al.

(2004)]. Many of these models are built on the agent-based modeling concept.

Individual persons (or small group of individuals) are modeled to interact with other

individuals and respond to changes in their environment, the world they are living

in. These models are capable of representing the heterogeneous nature of the

underlying population, and provide a relatively easy means for incorporating the

complexity of the real world environment. Regardless of whether the model is
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equation-based or simulation-based, once we have a high-fidelity disease spread

model, we can build a variety of mitigation strategies into the model and assess their

effectiveness.

Quality of the prediction of an epidemic spread also depends on the accuracy of

the information on the current state of the system. Information on the current state—

i.e., how many people have been infected as of today—is provided to an epidemic

spread model to develop prediction and identify the most likely scenario. If the

information on the current state is wrong, prediction even by the most accurate

epidemic model will be wrong, leading to suboptimal response decisions. This paper

addresses the problem of state estimation for the spread of an epidemic using a

nonlinear stochastic filtering technique.

One of the tools commonly used for epidemic state estimation and prediction is a

recursive Bayesian state estimation technique, and many examples of research using

this technique can be found in the literature [e.g., Dukic et al. (2012), Jegat et al.

(2008), Ong et al. (2010), Vidal Rodeiro and Lawson (2006), Shaman and Karspeck

(2012), Skvortsov and Ristic (2012)]. Bayesian state estimation assumes some

knowledge on the underlying dynamics of a system (system model), and recursively

updates the degree of belief in system states by using sequentially available

observation data. Since in most cases the underlying model is not fully known—

i.e., epidemic parameters in the model are typically unknown, these methods often

estimate epidemic parameters as well as state variables. For example, Dukic et al.

(2012), Ong et al. (2010), Skvortsov and Ristic (2012) use epidemic equations as a

system model, and formulate a Bayesian filtering problem to estimate epidemic

parameters and state variables. In the method developed in Dukic et al. (2012),

emphasis is placed on learning of the epidemic parameters. Skvortsov and Ristic

(2012), on the other hand, focuses on the inhomogeneous mixing of a population by

using a stochastic epidemic model. Our work is also based on recursive Bayesian

state estimation, a particle filter in particular, as the underlying modeling technique,

but it differs in that we concentrate on the question of combining multiple types of

surveillance information.

Our study is motivated by the fact that two types of surveillance data, particularly

in terms of their timeliness, are available to the estimation task (Dailey et al. 2007).

For an epidemic flu, a traditional source of information for the current epidemic

state is Influenza-Like-Illness (ILI) data from a government health agency such as

Centers for Disease Control and Prevention (CDC) (FluView 2013; Influenza

Weekly Report 2013). ILI refers to a medical diagnosis of a possible influenza case.

For example, Korea CDC defines ILI as a sudden fever over 38 �C along with cough

or throat pain (Influenza Surveillance 2014). ILI data are gathered from care

providers as patients with relevant symptoms visit hospitals and clinics. These data

are used as an indicator for the number of people infected with epidemic flu. ILI

data have some uncertainty (Jegat et al. 2008); they are based on a diagnosis by

symptoms only, not confirmed by lab tests, and thus do not distinguish those

infected with flu versus those who have symptoms by other causes. In addition,

there are always some flu patients who do not visit physicians. Nevertheless, ILI

data are generated from reports by physicians based on their medical diagnosis, and

thus are considered a reasonably reliable indicator for flu activity in the community.
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That said, there is one important shortcoming when using ILI data for estimating the

current state of disease spread. Generally, it takes 1–2 weeks to gather and process

data from a large surveillance network. In Korea, for example, about 250 hospitals

and labs participate in the surveillance network to report ILI cases to Korea CDC,

and the CDC’s weekly report is released on the 10th day from the end of the

reported week. Owing to this this 1–2 weeks lag, ILI data are outdated by the time

they are released. They do not provide real-time information on the current state of

flu spreading.

Another source of information is syndromic surveillance data, which are recently

getting significant attention from the research community (Chen et al. 2010; Chew

and Eysenbach 2010; Ginsberg et al. 2009; Lampos et al. 2010; Skvortsov and

Ristic 2012). Examples of syndromic surveillance data include school or work

absenteeism, over-the-counter drug sales, and search engine queries (Henning

2004). With proper tools and systems, syndromic surveillance data can be made

available in almost real-time, which offers an advantage for making timely state

estimation as evidenced by the well-popularized Google Flu Trends (Ginsberg et al.

2009). However, the data are based on the ’’syndromes,’’ which are largely the

population’s behavioral responses, and thus have lower credibility than ILI data.

As the two sets of data compliment each other, we naturally expect that

combining the two will improve the estimation outcomes. The main goal of this

paper is to understand and characterize the improvement in the state estimation from

assimilating the two datasets. In other words, we investigate the following

questions: given two sets of observation data—immediately-available-but-uncertain

data and credible-but-delayed data, which one would yield a better state estimation?

Is it always better to use both sets of data than using only one, and if so, how much

better? To investigate these questions, we develop a method to combine reliable-

but-time-delayed ILI data with less-reliable-but-immediately-available syndromic

surveillance data. Our method uses a particle filter with a compartmental epidemic

model, which is similar to Dukic et al. (2012), Skvortsov and Ristic (2012). In

addition, we use a modified version of the out-of-sequence-measurement particle

filter by Orton and Marrs (2005) to handle the delayed measurement data.

This paper is structured as follows: Sect. 2 briefly introduces the basics of the

particle filter algorithm and its extension, the out-of-sequence-measurement

(OOSM) particle filter. In Sect. 3, the system model and measurement model used

in the proposed particle filter are presented. Section 4 discusses the proposed

particle filter algorithm and its pseudo-code for implementation. In Sect. 5,

experimental results from a hypothetical epidemic outbreak scenario are presented.

Section 6 provides an analytic explanation for the patterns observed in the

experimental results. Finally, Sect. 7 concludes the paper.

2 Background

In this section, we briefly discuss the basics of the particle filter technique. Section

2.1 presents the principles of the particle filter, and Sect. 2.2 describes a variant of a

basic particle filter that handles out-of-sequence measurement (OOSM) data. For
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more details on particle filter and OOSM particle filter, refer to Ducet and Johansen

(2013), Orton and Marrs (2005), Ristic et al. (2004).

2.1 Particle filter

A particle filter is a recursive Bayesian filter, used for estimating the state of a

dynamic system where its state variables are not directly observable. The technique

is particularly useful for non-linear, non-Gaussian state estimation problems. A

particle filter combines a series of measurement data with a known system dynamics

model to update beliefs on the true state of the system.

To formally describe the technique, consider a system whose dynamics is

described by the following system model:

xk ¼ fk�1ðxk�1Þ þ vk�1 ð1Þ

where xk denotes a state vector at time index k; fk�1 is a possibly non-linear and

time-varying function, and vk�1 represents process noise. Suppose for this system a

set of observation data zk are measured at each time index k, and zk is related to xk
by the following observation model:

zk ¼ hkðxkÞ þ wk ð2Þ

where hk is a possibly non-linear and time-varying function, and wk denotes

measurement noise.

Let z1:k denote a series of measurement data up to k. Then, a recursive Bayesian

filter seeks to construct a posterior pdf pðxkjz1:kÞ as an estimate for the true state of

the system. This is done in two stages - prediction and update. Suppose that a

posterior pdf at ðk � 1Þ; pðxk�1jz1:k�1Þ is known. The prediction stage computes the

distribution of a predicted system state at k using our knowledge of the system

model (1). Conceptually, the prediction stage is written as follows:

pðxkjz1:k�1Þ ¼
Z

pðxkjxk�1Þpðxk�1jz1:k�1Þdxk�1 ð3Þ

where pðxkjxk�1Þ can be determined from the system model (1). When new mea-

surement data at k become available, the update stage is carried out to compute a

posterior pdf pðxkjz1:kÞ:

pðxkjz1:kÞ ¼
pðzkjxkÞpðxkjz1:k�1Þ

pðzkjz1:k�1Þ
/ pðzkjxkÞpðxkjz1:k�1Þ ð4Þ

pðzkjxkÞ is the likelihood of measurement zk if the system state were xk, and
pðzkjxkÞ can be determined from the observation model (2).

When fk and hk are linear and vk and wk are independent white Gaussian, (3) and

(4) can be solved exactly; a Kalman filter provides an optimal filtering solution in an

analytic form. In most other cases, however, (3) and (4) cannot be solved exactly,

and some form of approximation is required. A particle filter is one such method. A
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particle filter uses a sample representation for a posterior density pðxkjz1:kÞ, which
can be written as:

pðxkjz1:kÞ ’
XNs

i¼1

xi
kdðxk � xikÞ ð5Þ

where dðx� xiÞ is 1 for x ¼ xi, and 0 otherwise. xi
k is a weight assigned to sample

xik, and Ns is the number of samples (i.e., particles). Following the principle of

importance sampling, xi
k can be written in the following recursive form:

xi
k / xi

k�1

pðzkjxikÞpðxikjxik�1Þ
qðxikjxi0:k�1; z1:kÞ

ð6Þ

qð�Þ is an importance or proposal density from which the samples xik are drawn.

A generic particle filter algorithm, often referred to as Sequential Importance

Resampling (SIR) algorithm, then proceeds as follows:

1. For each particle xik�1, draw xik from qðxikjxi0:k�1; z1:kÞ
2. Evaluate the importance weight xi

k for x
i
k by (6)

3. Normalize the weights, x̂i
k ¼ xi

k=
PNs

j¼1 x
j
k

4. Draw a new sample set xi�k so that Probðxi�k ¼ xjkÞ ¼ x̂j
k; x

i�
k is assigned an equal

weight of 1=Ns

As new measurement data zk arrive, the SIR particle filtering algorithm estimates

the posterior density pðxkjz1:kÞ by updating the sample set that approximates the

true posterior. It is noteworthy that if we use pðxikjxik�1Þ for the importance

density qðxikjxi0:k�1; z1:kÞ, then (6) reduces to xi
k / xi

k�1pðzkjxikÞ. The fourth step

is referred to as a resampling procedure. Resampling is necessary to prevent the

weights from being concentrated to a few particles. When weight concentration

occurs, most other particles become irrelevant to the computation as the

algorithm proceeds, rendering the algorithm inefficient and ineffective. This

phenomenon is known as the degeneracy problem. A common practice for

resampling is to carry out resampling only when the effective sample size is

smaller than some threshold. Step (4) here simply assumes that resampling is

executed at every time step.

2.2 OOSM particle filter

Out-of-sequence measurements (OOSMs) refer to measurement data that arrive with

delay. The delayed arrival of OOSM means that they represent the system state at

some point in the past. Let tk denote the actual time instant when zk, measurement

data arriving in the kth sequence, have been taken. When tk [ tk�1; zk is in

sequence, and when tk\tk�1, then it is out of sequence. The OOSM particle filter

provides a means to update the importance weight upon an arrival of an out-of-

sequence measurement.
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Suppose we have a series of in-sequence measurement data, z1:k�1, and at k, out-

of-sequence data zk arrives. Let b and a be the time indices immediately before and

after tk. That is, tb\tk\ta and a ¼ bþ 1. The joint posterior density

pðx0:k�1jz1:k�1Þ can be expanded as follows:

pðx0:k�1jz1:k�1Þ ¼
pðzk�1jxk�1Þpðxk�1jxk�2Þpðz1:k�2Þ

pðz1:k�1Þ
� pðx0:k�2jz1:k�2Þ

¼ pðzk�1jxk�1Þpðxk�1jxk�2Þpðz1:k�2Þ
pðz1:k�1Þ

� � � �

� pðzajxaÞpðxajxbÞpðz1:bÞ
pðz1:aÞ

� pðzbjxbÞpðxbjxb�1Þpðz1:b�1Þ
pðz1:bÞ

� pðx0:b�1jz1:b�1Þ

ð7Þ

When the out-of-sequence measurement zk arrives, (7) is modified to incorporate

the new dependence relationships between xb; xk, and xa by rewriting (7) with the

insertion of zk. The new posterior pðx0:kjz1:kÞ is,

pðx0:kjz1:kÞ ¼
pðzk�1jxk�1Þpðxk�1jxk�2Þpðz1:k�2Þ

pðz1:k�1Þ
� � � �

� pðzajxaÞpðxajxkÞpðz1:kÞ
pðz1:aÞ

� pðzkjxkÞpðxkjxbÞpðz1:bÞ
pðz1:kÞ

� pðzbjxbÞpðxbjxb�1Þpðz1:b�1Þ
pðz1:bÞ

� pðx0:b�1jz1:b�1Þ

ð8Þ

Comparing (7) with (8), we obtain the following recursive relationship:

pðx0:kjz1:kÞ ¼ pðx0:k�1jz1:k�1Þ �
pðxajxkÞpðxkjxbÞpðzkjxkÞ

pðxajxbÞpðz1:kÞ
ð9Þ

With (9), we now have a weight update equation similar to (6).

xi
k / xi

k�1

pðzkjxikÞpðxikjxia; xibÞ
qðxikjxi0:k�1; z1:kÞ

ð10Þ

It was shown in Orton and Marrs (2005) that the optimal importance density is

pðxikjxia; xib; zkÞ. However, sampling from the optimal importance density function is

quite difficult, and Orton and Marrs (2005) suggests pðxikjxia; xibÞ as a tractable

approximation. This choice of importance function reduces (10) to

xi
k / xi

k�1pðzkjxikÞ.
It turns out that for our problem, we can use a more straightforward

implementation of the above OOSM particle filter framework. This is due to an

assumption in our hypothetical problem - OOSMs in our problem have a known,

fixed lag interval L. A modified version of an OOSM particle filter is presented in

Sect. 4.
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3 Epidemic model

We consider a hypothetical outbreak of an epidemic where two streams of

observation information - syndromic surveillance data and ILI data - arrive

sequentially. Syndromic surveillance data are assumed to be immediately available

but have high uncertainty, while more reliable ILI data are delayed by a certain time

lag. In this section, we first describe the epidemic model that we use in the present

study as a system model for the particle filter formulation. We then discuss the two

observation data sets and their measurement model.

Using a set of differential equations to describe the spread of epidemic disease

has a long history, dating back to the work by Kermack and McKendrick (1927) in

the early 20th century. Typically, these models divide the population into a few

compartments, and express the rate at which the population from one compartment

flows to other compartments by a set of ordinary differential equations. One of the

simplest models is the S-I-R model, where S, I, and R denotes susceptible,

infectious, and recovered compartments. Susceptible individuals have not yet been

infected by the disease, and may become infected by contacting an infectious

person. Infectious persons may infect the susceptible persons until they eventually

recover from the disease. Once recovered, they acquire immunity against the

disease. Let P be the total population size, and let S; I, and R denote the number

of individuals in each compartment. The time scale of an epidemic disease is short

relative to the time scale of population size change, and P ¼ Sþ I þ R for a

constant P. Flows between the three compartments can be described by the

following set of equations:

ds

dt
¼ �bsi;

di

dt
¼ bsi� ci; r ¼ 1� s� i ð11Þ

where s; i, and r denote the size of each compartment normalized by the total

population size P. b represents the rate of infectious contacts, and c is the recovery
rate, which is the inverse of the average infectious period for the disease.

One important underlying assumption in (11) is that we have a homogeneous

population and they are perfectly mixed - i.e., anyone can have contact with anyone

in the community with equal probability. This is quite a strong assumption, far from

the real world’s heterogeneous and intricate contact behaviors (Rahmandad and

Sterman 2008). One approach to address this issue is to introduce stochastic

fluctuations to the basic S-I-R model. For example, Skvortsov and Ristic (2012)

presents a stochastic version of the basic S-I-R model, and the modified S-I-R model

incorporates stochastic fluctuations in (11):

ds

dt
¼ �bism þ rqn

di

dt
¼ bism � ci� rqnþ rcf

r ¼ 1� s� i

ð12Þ
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m; rqn and rcf are introduced to account for heterogeneity and stochasticity. n and f
are uncorrelated, white Gaussian noise with zero mean and a unit variance. For the

purpose of discussions in this paper, we simplify (12) by assuming that the

parameters in the model – b; m; rq; c; and rc – are all known constants.

We define a state vector x ¼ ½s; i�T, and then we have a discretized state-space

model for (12) to use in the particle filter implementation:

skþ1

ikþ1

� �
¼

sk

ik

� �
þ

�biksmk
ðbiksmk � cikÞ

� �
Dt þ

rqn

ð�rqnþ rcfÞ

� �
Dt1=2 ð13Þ

In the analyses in this paper, we assume the parameters in (13) take constant values-

b ¼ 0:3; c ¼ 0:1; m ¼ 1:0, and rq ¼ rc ¼ 0:001.1

We assume that measurement data arrive with a fixed interval Dm. We further

assume that syndromic surveillance data and ILI data arrive in an alternating

sequence. An arrival pattern for the measurement data is shown in Fig. 1.

ILI data have a fixed time-delay of LDm. Suppose that, at t ¼ tNOW , we have a

new measurement zk from ILI data reported at the kth sequence. zk corresponds to

the system state at time tk, which is ðtNOW � LDmÞ. Figure 1 shows an example when

L ¼ 4. The kth measurement data zk arrives at tNOW , and it contains information on

the system state at tNOW � 4Dm.

For a measurement model, we follow Skvortsov and Ristic (2012) to assume the

following relationship for both syndromic surveillance data and ILI data:

z ¼ bji
1j þ rjgj ð14Þ

where j = synd or ILI to indicate whether a measurement is obtained from syn-

dromic surveillance data or an ILI case report. For simplicity, we assume that bj and

1j are known, bj ¼ 1:0 and 1j ¼ 1:0, for both syndromic surveillance data and ILI

data. gj is independent Gaussian noise with a unit variance. rj is used to represent

reliability of the two data sets. rsynd for the syndromic surveillance data is set to

Fig. 1 In-sequence (solid square) and out-of-sequence (dashed square) measurement data. Out-of-
sequence data arriving at tNOW contain information on the system state at tNOW � LDm

1 We also tested other values for rq and rc and find the results were qualitatively similar. Result data for

the additional tests will be provided upon request.
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0.05, and rILI for ILI data is varied in the range of 0.0005 to 0.1 to depict the relative
difference in reliability between the two data.

Equation (12) and (14) serve as a system model (1) and a measurement model (2)

for our particle filter formulation.

4 Particle filter implementation

Our problem is to estimate the current state of epidemic spreading, where we define

the system state as the number of susceptible and infectious persons in the

community. Two measurement data are available for the estimation task -

syndromic surveillance data and ILI case report data. Syndromic surveillance data

provide information on the current state while ILI data are delayed by some lag due

to data processing by the public health authority. On the other hand, ILI data are

more reliable relative to syndromic data because they are obtained based on clinical

diagnosis.

Upon an arrival of measurement data zk, our particle filter algorithm starts by

determining whether zk is syndromic surveillance data or ILI data. If zk is

syndromic surveillance data, we know that it is in sequence relative to zk�1 and

therefore a standard particle filter is applied as illustrated in Sect. 2.1. If zk is ILI

data, it is an out-of-sequence measurement and we use an OOSM particle filter.

In this study, we provide a more straightforward implementation for the OOSM

particle filter framework. Here, we depart from the OOSM particle filter algorithm of

Orton andMarrs (2005) to propose a modified version for two reasons. First, applying

Orton’s OOSM particle filter Orton and Marrs (2005) as described in Sect. 2.2

requires sampling from pðxikjxia; xib; zkÞ or its approximation pðxikjxia; xibÞ. Neither is
straightforward in our case due to the nonlinearity present in the system model (13).

Second, unlike general OOSM cases discussed in Orton andMarrs (2005), we assume

a known and fixed amount of lag LDm for the out-of-sequence measurement data. This

assumption eliminates concerns related to having to store the entire history of

particles throughout the filtering time horizon. With the assumption of a fixed lag, we

only need to store the particle history from tNOW to ðtNOW � LDmÞ.2
The basic idea behind our OOSM particle filter approach is as follows: when we

obtain a measurement for a past state, the best route is to go back and re-compute

from the past point as if a set of in-sequence measurement data are arriving. We call

this approach a roll-back-and-update scheme. The original OOSM scheme

discussed in Sect. 2.2 answers the following question - ‘‘Among the set of particles

we have at tNOW , which are the ones with high likelihood, given a newly available

measurement on its past?’’ On the other hand, the question addressed by our roll-

back-and-update scheme is, ‘‘Given a newly available measurement on its past, how

would the current particle distribution change?’’

2 In the context of epidemic state estimation, this assumption may not be required since storing the entire

history of particles is most likely feasible: (1) measurement sampling frequency is in the order of day or

week, and thus the size of measurement data is not huge, and (2) epidemic state estimation does not

require real-time computation.
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Our roll-back-and-update scheme is illustrated using Fig. 1 up to tNOW . Let us

first ignore all out-of-sequence measurement data except zk. In other words, suppose
we have a series of in-sequence measurement data zk�5; zk�3; zk�1, and out-of-

sequence measurement data zk. As the in-sequence measurement data arrive, we use

the standard particle filter algorithm in Sect. 2.1 to sequentially update the posterior

density at tNOW � 5Dm; tNOW � 3Dm, and tNOW � Dm. Thus, at t ¼ tNOW � Dm, we

have fxik�5;x
i
k�5g; fxik�3;x

i
k�3g, and fxik�1;x

i
k�1g. Now at tNOW , out-of-sequence

measurement data zk arrives. If we ignore the previously computed posterior

densities - fxik�3;x
i
k�3g; fxik�1;x

i
k�1g - and return to (tNOW � 4Dm), we simply

have another instance of standard particle filtering. We have fxik�5;x
i
k�5g as the

posterior density, and a series of in-sequence measurement fzk; zk�3; zk�1g: xik�5 is

propagated to find xik�4, its weight x
i
k�4 is updated using zk; x

i
k�4 is propagated to

xik�3; x
i
k�3 is updated using zk�3, and so on. We re-compute and update the portion

of history of the particles from k � 4 to k � 1. This roll-back-and-update process is

executed every time an out-of-sequence measurement arrives.

The OOSM algorithm used in this paper is summarized below:

1. fxik�1;x
i
k�1g

Ns

i¼1 is given, and zk arrives

2. If zk is a syndromic surveillance data (i.e., an in-sequence measurement)

– Use a standard particle filter to compute fxik;xi
kg

Ns

i¼1

3. Else if zk is a ILI data (i.e., an out-of-sequence measurement)

– Let zoosm ¼ zk
– From the stored particle history, retrieve fxik�L�1;x

i
k�L�1g

– Given an in-sequence measurement fzoosm; zk�Lþ1; zk�Lþ3; . . .; zk�1g,
execute a standard particle filter to update fxioosm;xi

oosmg;
fxik�Lþ1;x

i
k�Lþ1g; fxik�Lþ3;x

i
k�Lþ3g, ..., fxik�1;x

i
k�1g

– Sample xik using (13), and set xi
k ¼ xi

k�1 to obtain fxik;xi
kg

Ns

i¼1

5 Experimental results

We first generate a true state sequence, x0:T, using (13) with an initial state

½s�0; i�0� ¼ ½0:99; 0:01�. Measurement data are then generated according to (14).

Syndromic surveillance data arrive with a measurement interval Dm ¼ 10Dt, and so

do ILI data. Figure 2 shows an example instance of the true system state iðtÞ and the

two measurement data (‘�’ for syndromic surveillance data and ‘�’ for ILI data). In
this example, measurement noise for syndromic surveillance data, rsynd is 0.05 and

rILI is much smaller at 0.005. ILI data have a lag of 50 time units as shown by the

shift in the ILI data stream in Fig. 2.

For an initial prior, we use a uniform distribution such that i0 �U½0; 2i�0� and
s0 ¼ 1� i0. The number of particles Ns is 300, and particles are resampled at every

step of particle filtering. Figure 3 shows a typical example of particle filtering
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results. On the left, we use syndromic surveillance data (‘�’) only, and in the

middle, only ILI data (‘�’) are used. Shown on the right is the estimation results

when both syndromic data and ILI data are used together.

Comparing the left and middle plots, we see that the relatively high

uncertainty of syndromic surveillance data (rsynd ¼ 0:05[ rILI ¼ 0:005) mani-

fests as a wider range of particle distribution. A posterior density estimated using

syndromic surveillance data shows a larger variance than using ILI data even

when ILI data have a non-trivial lag. On the other hand, when we compare the

first two plots and the rightmost plot, it is not readily visible whether using both

sets of data improves the quality of estimation. To make quantitative

comparisons, we measure the RMSE value taken over the whole trajectory as

follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meanfðitruek � îkÞ2g

q
ð15Þ

where itruek is the true state value and îk is the average value of Ns particles at k.

We vary the amount of lag from 0 to 140 by an increment of 10. Six levels of

rILI – f0:001; 0:002; 0:005; 0:01; 0:02; 0:05g – are tested, while fixing rsynd at 0.05.

We run 20 replications for each set of parameter values to obtain the average

RMSE over the replications. For each case, we evaluate the average RMSE under

1) using syndromic surveillance data only (RMSEsynd), 2) using ILI data only

(RMSEILI), and 3) using both sets of data (RMSEboth). Results are shown in Figs. 4

and 5.

Across all levels of rILI , the average RMSE curves display a consistent pattern.

We make the following observations. First, when using only ILI data (RMSEILI), the

average RMSE monotonically increases. An intuitive, semantic explanation for the

monotonic increase is that for a given level of uncertainty in the measurement data,

the value of their information decreases as their acquisition is more delayed. Note

Fig. 2 An example trajectory of true state iðtÞ (solid line) and the two measurement data (’�’ for
syndromic surveillance data and ’�’ for ILI data). ILI data are delayed by a lag of 50 time units
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that, in Figs. 4 and 5, RMSEsynd curves (dotted) are identical in all subplots since

they are not a function of rILI . They remain constant along the x-axis in each subplot

since they are not a function of lag either.3

Fig. 3 Particle filter estimates the posterior density of the true state pðxkjz1:kÞ as an approximate density
represented by a set of particles. At each k, a set of resampled particles (equal weights) is plotted along

the vertical direction, and their mean value, îk , is denoted by a circle. Filtering results are shown for:
(Left) syndromic surveillance data only, rsynd ¼ 0:05; (Middle) ILI data with lag = 50, rILI ¼ 0:005 (note

that data points have been shifted to indicate their actual measuring point); (Right) both syndromic
surveillance and ILI data
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Fig. 4 Average RMSE as a function of lag in ILI data: rs ¼ ri ¼ 0:001;rsynd ¼ 0:05;rILI = 0.001, 0.002,

0.005 (top left to right), 0.01, 0.02, 0.05 (bottom left to right); dotted line for a case where only syndromic
surveillance is used, dashed line for ILI data only, and solid line for both sets of data

3 Slight variations visible in the figures are due to non-systematic causes.
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Second, the monotonic increase observed in the average RMSE seems to

approach a certain limit. This is particularly visible in Fig. 5. Again, we may offer

an intuitive explanation. A very large measurement lag would make measurement

information obsolete, and at an extreme, it will be equivalent to having no (useful)

measurement at all. In this case, we will be left with a system model only, and our

estimation of system states will be no better than the system model’s accuracy (i.e.,

process noise). Thus, the average RMSE would approach to a limit, which depends

on the underlying process noise.

Third, the average RMSE when using both sets of measurement data (RMSEboth)

stays below the RMSE curves for each data case. While this is rather expected, a

closer examination suggests a more interesting behavior. It approaches the RMSE

curve of ILI-only (RMSEILI) when the lag goes to zero, and it approaches the

syndromic-surveillance-only curve (RMSEsynd) when the lag becomes very large.

We also note that the difference between minfRMSEsynd;RMSEILIg and RMSEboth

seems to be maximized when RMSEsynd and RMSEILI curves intersect. The

following conjecture for this observation is possible: when the value of one of the

two sets of measurements dominates the other, the benefit of using both sets of

measurement diminishes and its state estimation is no better than when using the

superior measurement data. Using both sets of measurement data is most rewarded

when the two have comparable value.

Figure 6 presents the same results along the rILI axis for a fixed lag. It displays

the same pattern as observed in the earlier figures. As rILI becomes small, RMSEboth
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Fig. 5 Average RMSE as a function of lag in ILI data: rs ¼ ri ¼ 0:005;rsynd ¼ 0:05;rILI = 0.001, 0.002,

0.005 (top left to right), 0.01, 0.02, 0.05 (bottom leftto right); dotted line for the case where only
syndromic surveillance is used, dashed line for ILI data only, and solid line for both sets of data
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approaches the RMSEILI curve, and vice versa. The benefit of using both sets of data

appears to be maximized when the two RMSE curves intersect.

Recall that the first motivating question for our experiment was ‘‘given

immediately-available-but-uncertain data and credible-but-delayed data, which

one would yield better state estimates?’’ The experimental results suggest that this

depends on relative uncertainty and the amount of delay. The second question was

‘‘would it always be better to use both sets of data than using only one?’’ The answer

seems to be ‘‘not always.’’ It is advantageous to use both sets of data when they have

comparable values. Otherwise, it is only as good as using measurement data of a

higher quality.

All these results appear to indicate that there is a systematic mechanism behind

the patterns observed in the above figures. Further investigations using analytic

models are warranted to support the observations and conjectures mentioned above.

In the next section, we draw an analytic explanation on the behavior of the RMSE

curves exhibited in Figs. 4, 5, 6.

6 Discussion

We begin our discussion by examining the effect of measurement delay on RMSE of

state estimates. In Sect. 5, we saw that whether immediately-available-but-uncertain

data or credible-but-delayed data would yield better estimates depends on the

amount of delay. This leads us to a concept of equivalent standard deviation, ~rz.
Suppose we have a series of measurement data with delay L and their standard

deviation is rz ¼ c, and we obtain an average RMSE ¼ r. Then, we find the standard

deviation ~rz of hypothetical, no-delay measurements that yields the same RMSE.
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Fig. 6 Average RMSE as a function of rILI for a fixed lag: rs ¼ ri ¼ 0:001;rsynd ¼ 0:05; lag = 0, 20, 40

(top left to right), 60, 80, 100 (bottom left to right); dotted line for a case where only syndromic
surveillance is used, dashed line for clinical case report only, and solid line for both sets of data
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We call ~rz the equivalent standard deviation for the original, delayed measurement

z. We expect that the value of ~rz will be larger than rz. The concept of equivalent

standard deviation is illustrated in Fig. 7. Figure 7 (left) is a plot of average RMSE

as a function of rz for various amount of lags: f0; 10; 20; . . .; 140g. When, for

example, measurement data have a delay of 30 time units and the data’s standard

deviation is 0.039, the graph shows that the average RMSE of the estimation is

approximately 0.0165. Looking at the curve for lag = 0 (the bottom-most curve,

thick-lined), we see that standard deviation of 0.06 would provide the same level of

average RMSE. Hence, ~rz in this example is 0.06, which is larger than rz. Non-
delayed measurement data with larger noise provide an informative value equivalent

to delayed measurement data with smaller noise. Shown in Fig. 7 (right) is a plot of

~rz as a function of measurement delay for rz ¼ f0:05; 0:02; 0:01; . . .; 0:0005g. It
shows that ~rz monotonically increases as a function of measurement delay, which is

consistent with our intuitive expectation: the informative value of measurement data

decreases as the amount of delay increases.

This monotonicity explains why we observe similar patterns in Figs. 4, 5 and 6.

In each subfigure of Fig. 4, the average RMSE is shown as a function of the lag in

ILI data. Since the increase in the lag implies a higher equivalent standard deviation,

Fig. 4 can be redrawn as a function of ~rz with more or less the same pattern. This

has bearing on our analysis of the behavior of RMSE curves: it suggests that we may

consider only ~rz instead of rz (with delay L) when describing the behavior of the

RMSE curve. As such, in what will follow, we construct an analytic explanation

assuming no delay in measurement data.

Consider the following simple model where we are given two types of

independent measurements, z1 and z2, and attempt to compute the posterior density

for a state variable x; pðxjz1; z2Þ, . For now, we assume a normal distribution for its

prior, pðxÞ, and likelihood, pðz1jxÞ and pðz2jxÞ. That is, pðxÞ ¼ Nðl0;r20Þ; pðz1jxÞ ¼
Nðx; s21Þ; and pðz2jxÞ ¼ Nðx; s22Þ. Let b0 denote the precision of Nðl0; r20Þ, i.e.,

b0 ¼ 1=r20. Likewise, b1 ¼ 1=s21 and b2 ¼ 1=s22.
The posterior density of x given a measurement z1 is written as

pðxjz1Þ / pðz1jxÞpðxÞ. Since we assume a normal prior and normal likelihood, we

know the posterior is also a normal density, Nðl1; 1=b1Þ, where b1 ¼ b1 þ b0 and

l1 ¼ ðb1z1 þ b0l0Þ=b1; the precision of the posterior is improved by adding

the precision of measurement data b1 to the prior’s precision b0, and its mean

is an average of the prior mean and measurement weighted by the relative

precision of each. Similarly, pðxjz2Þ / Nðl2; 1=b2Þ, where b2 ¼ b2 þ b0 and

l2 ¼ ðb2z2 þ b0l0Þ=b2.
When both measurement data are given, the posterior density can be written as a

factorized form: pðxjz1; z2Þ / pðz1jx; z2Þpðz2jxÞpðxÞ ¼ pðz1jxÞðz2jxÞpðxÞ. Note that

in the second step, the conditional independence between z1 and z2 (i.e., z1 ? z2jxÞ
is used. pðxjz1; z2Þ is a product of three normal densities, and it is straightforward to

show that it is a normal density Nðl12; 1=b12Þ with b12 ¼ b1 þ b2 þ b0 and

l12 ¼ ðb1z1 þ b2z2 þ b0l0Þ=b12. To summarize, we have the following results for

our model:
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pðxjz1Þ ¼ Nðl1; r21Þ l1 ¼
b1z1 þ b0l0
b1 þ b0

r21 ¼
1

1=s21 þ 1=r20

pðxjz2Þ ¼ Nðl2; r22Þ l2 ¼
b2z2 þ b0l0
b2 þ b0

r22 ¼
1

1=s22 þ 1=r20

pðxjz1; z2Þ ¼ Nðl12; r212Þ l12 ¼
b1z1 þ b2z2 þ b0l0

b1 þ b2 þ b0
r212 ¼

1

1=s21 þ 1=s22 þ 1=r20
ð16Þ

With (16), for a fixed value of s1 and r0, we can compute r212; r
2
2; r

2
1 by varying s2.

Figure 8 shows a plot of r12; r2; r1 as a function of s2.

Now, let indexes 1 and 2 denote the syndromic surveillance data and ILI data,

respectively. r21 is then a posterior variance given syndromic surveillance data only,

and r22 for ILI data only. r
2
12 is a posterior variance when both sets of data are used.

Figure 8 is then analogous to Fig. 6, and we see that the behavior observed in the

experimental results is almost exactly reproduced in Fig. 8.

Furthermore, using (16), we can show that the benefit of using both sets of data is

maximized when r21 ¼ r22, which is consistently observed in Figs. 4 , 5, 6. Let D1;12

(resp., D2;12Þ denote the reduction of posterior variance by using both datasets

compared to using only dataset 1 (resp., dataset 2). Subtracting r212 from r21 gives

D1;12 as

D1;12ðkÞ ¼ r21 � r212 ¼
A2

ABþ B2k
A ¼ s21; B ¼ s21 þ r20

ð17Þ
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Fig. 7 (Left) Same level of avg. RMSE is obtained from delayed data with rz and no-delay data with ~rz;
(Right) Longer lag for a given level of rz corresponds to a bigger ~rz
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Note we use k to denote s22 for a simpler presentation. Since k is strictly non-

negative, D1;12 is a monotonically decreasing function, where D1;12ð0Þ ¼ A=B and

D1;12ð1Þ ¼ 0. Similarly, we have an expression for D2;12ðkÞ:

D2;12ðkÞ ¼ r22 � r212 ¼
ðBr20 � AÞk2

Bk2 þ ðBr20 þ AÞkþ Ar20
ð18Þ

D2;12ð0Þ ¼ 0 and D2;12ð1Þ ¼ A=B � r20=s21. The first derivative of D2;12ðkÞ confirms

that it is an increasing function of k. Figure 9 shows a plot of D1;12 and D2;12 as a

function of k.
The benefit of using both sets of data over using one (superior) set is given by the

minimum of D1;12 and D2;12 - i.e., a reduction in the posterior variance compared to

the better one of r21 and r
2
2. This is given by the dashed line up to k

� and by the solid
line after k�, and its maximum is obtained at k�. k� is when D1;12 ¼ D2;12, which is

equivalent to r21 ¼ r22. This is consistent with the earlier statement made in sect. 5:

‘‘Using both sets of measurement data is most rewarded when the two sets have

comparable informative value’’.

We end this section by recapitulating the implications and importance of high-

fidelity epidemic state estimation especially in the context of future prediction.

Figure 10 shows a scenario of predicting the future course of disease spread.

Prediction is made on the 14th day (t ¼ 140) after the initial outbreak. Syndromic

surveillance data arrive daily from day 1, while ILI data arrive with a lag of 0 (top-

left), 3 (top-right), 5 (bottom-left), and 7 (bottom-right) days. When the ILI data

arrive with a shorter lag, the posterior density on the 14th day shows much smaller

variance. Future prediction depends on the posterior density on day 14, and Fig. 10

clearly demonstrates the effect of the goodness of the posterior density on the

prediction of future progress of an epidemic spread.
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7 Conclusion

We study a problem of estimating current epidemic state by combining syndromic

surveillance data and ILI data through particle filtering. The two sets of data

compliment each other: syndromic surveillance data are immediately available but

contain large noise while more reliable ILI data are delayed by some lag due to the

reporting process. Our experimental results from hypothetical pandemic scenarios

show that using both sets of data is advantageous only when the informative value

Fig. 9 Reduction of posterior variance, D, when using both sets of data. The benefit of using both data
sets over one set is maximized at k� when the variances of the two sets are equal to each other

Fig. 10 ILI data are delayed by 0 days (top-left), 3 days (top-right), 5 days (bottom-left), and 7 days
(bottom-right). Larger lags in ILI report data increases uncertainty in prediction of future states
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of the two data sets is comparable. Analysis of a linear, Gaussian case suggests that

this behavior is a logical consequence of using a Bayesian stochastic filtering

framework. While we believe that the method and conclusions in the paper are not

confined to the hypothetical cases tested therein, it will be worthwhile and

interesting to conduct further experiments using real data to validate the practical

significance and relevance of this work in real world applications.

Considering there is a possible trade-off between timeliness and credibility of

clinically validated surveillance data, appropriate design of surveillance data

collection and processing is a valid optimization problem. We expect that

understanding and insights as well as the state estimation technique presented in

this paper will aid in such decision making for public health authorities.
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