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Abstract In this paper, we model preventive maintenance
strategies for equipment composed of multi-non-identical
components which have different time-to-failure probability
distribution, by using aMarkov decision process (MDP). The
originality of this paper resides in the fact that a Monte Carlo
reinforcement learning (MCRL) approach is used to find the
optimal policy for each different strategy. The approach is
applied to an already existing published application which
deals with a fleet of military trucks. The fleet consists of a
group of similar trucks that are composed of non-identical
components. The problem is formulated as aMDPand solved
by a MCRL technique. The advantage of this modeling tech-
nique when compared to the published one is that there is
no need to estimate the main parameters of the model, for
example the estimation of the transition probabilities. These
parameters are treated as variables and they are found by the
modeling technique, while searching for the optimal solu-
tion. Moreover, the technique is not bounded by any explicit
mathematical formula, and it converges to the optimal solu-
tion whereas the previous model optimizes the replacement
policy of each component separately, which leads to a local
optimization. The results show that by using the reinforce-
ment learning approach, we are able of getting a 36.44%
better solution that is less downtime.
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Introduction

Reinforcement learning is a computational approach where
a learning agent (a virtual decision-maker) interacts with an
uncertain environment in order to achieve a specific goal.
The virtual agent learns what action to take for each situa-
tion it encounters in order to maximize a cumulative reward,
which represents the agent objective. The objective of rein-
forcement learning is to find an optimal strategy defined as
a mapping from situation (state) to actions for control prob-
lems. This is the focus of this paper. To achieve this objective,
the agent discovers which actions yield the most reward, by
trying all the possible actions without knowing in advance
what actions should be taken. Another important aspect of
how the agent chooses the actions is that it takes into con-
sideration the consequences of the actions on the reward,
and it extends them over the time periods. In some periods it
will choose to sacrifice some present reward in order to gain
more afterwards. This leads to an optimization over a finite or
infinite horizon as opposed to optimization over each period
of time. To solve the optimization problems, the concept of
exploitation and exploration has been addressed intensively
in the literature (Wang et al. 2013). The reinforcement learn-
ing crucial element is the trade-off between exploitation and
exploration. Exploration consists of the agent trying all the
possible actions at least once in order to make better actions’
selection in the future, whereas exploitation consists of the
agent using its current knowledge to obtain a reward. Finally,
the reinforcement problem is highly related to the formalism
of Markov decision processes (MDPs) and dynamic pro-
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gramming. This machine learning approach adds to MDPs a
focus on approximation and incomplete information (Sutton
and Andrew 1998). Incomplete information in this context
means that we do not know the one-step transition matrix of
theMDP.Hence, an optimal policy cannot befinding byusing
dynamic programming due to the incomplete information,
which is the transition matrix of the problem. The suggested
model-free reinforcement learning algorithms overcome this
issue through the exploration, that is the interaction between
the agent and the simulation of the environment. For this rea-
son, the preventive maintenance problem is formulated as an
MDP, and it is solved by using reinforcement learning tech-
nique instead of using the dynamic programming concepts.
This later suffers from the ‘curse of dimensionality’ and the
‘curse ofmodeling’. The curse of dimensionality comes from
much longer computational time and much larger memory
space needed, as the state space of the problem increases.
The curse of modeling comes from the need to estimate the
transition probabilities which is often difficult to estimate,
especially when the state space is large (Powell 2007). Rein-
forcement learning algorithms are capable to overcome these
two curses of dynamic programming. They have the capabil-
ity to solve very large MDPs without the knowledge of the
transition probabilities. They have been successfully applied
in some domains such as the board games (for example Oth-
ello chess andgameofGo) and in robotics control (Sutton and
Andrew 1998). For example, Monte Carlo Tree Search based
reinforcement learning algorithmwas successfully applied in
the game of Go. It is a very challenging problem since a 9×9
Go has 39×9 ≈ 1038 of distinct board positions. Yet, it was
successfully learned and was able to defeat a professional
level human player in 2009 who won at least one major tour-
nament before (Gelly et al. 2012).

Despite the strength and advantages of the reinforce-
ment learning approach, it has not been applied intensively
in solving industrial problems. It was used successfully in
scheduling problems in an uncertain environment. Tuncel
et al. (2014) successfully solved the disassembly line bal-
ancing problem by applying Monte Carlo reinforcement
learning. Their goal consisted of assigning disassembly
operations to workstations to build a feasible sequence of
disassembly tasks such that the minimum number of work-
stations is achieved as well as the variation of idle time
among workstation is minimized (Tuncel et al. 2014). Das
and Sudeep (1999) applied it for finding the optimal preven-
tive maintenance policy in a production inventory system
which produces a single product type to satisfy an external
demand and the inventory is maintained following an (S,s)
policy. Similarly, Gosavi (2004) developed a new reinforce-
ment learning algorithm for solving Semi-Markov Decision
Processes (SMDPs) in the context of long-run average cost
and apply it to the same problem described above. Finally,
Wang et al. (2014) applied multi-agent reinforcement learn-

ing in order to find the optimal policy for a flow line system
consisting of two series machines with an intermediate finite
buffer between them.To our knowledge, there is no paper that
tries to find the optimal replacement policy that minimize the
total downtime for an equipment composed of multi-non-
identical components by applying reinforcement learning,
which is the application problem presented in this paper.

The objective of this paper is to obtain the optimal
replacement policy that minimize the total downtime for
an equipment composed of multi-non-identical components
which are neither in series nor in parallel, and which have
all different random time-to-failure (Steven 2001; Jardine
and Tsang 2013). In this paper, three different preventive
maintenance strategies are formulated by using MDP. The
optimal policies are found by using the on-policy first-visit
Monte Carlo control algorithm for ε-soft policy (Sutton and
Andrew 1998). The three strategies are: a classical main-
tenance, where each component is replaced at a specified
constant time, the second one differs from the previous one
by adding a scheduled overhaul where all the components
are replaced, and the third one differs from the first one by
adding the notion of neighborhoodwhere the components are
organized into groups and if a component fails or is replaced
preventively, then all other components belonging to the same
group are replaced. This is an opportunistic strategy which is
based on the assumption that it is sometimes better to replace
a component that didn’t fail but its neighbor has failed, than
to wait for each component in this neighborhood to fail.
This situation usually happens when the time of replacing
separately each component in the neighbor is much higher
than the time to replace a group of neighboring component,
and the cost of a component is usually less than the cost of
stopping the equipment. The modeling approach that is pre-
sented in this paper is evaluated by comparing its results to
those obtained when using traditional simulation technique
used by Abdel Haleem and Yacout (1998), this model is
called the reference. For the purpose of comparison, the tra-
ditional Monte Carlo simulation approach is first used, and
the parameters of the time-to-failure probability distribution
of each component, which follow differentWeibull probabil-
ity distributions are estimated based on the real data of times
to failure. A Monte Carlo reinforcement learning (MCRL)
approach is then presented to model the same problem, and
the results are compared. In the next sections, the formu-
lation of the different preventive maintenance strategies by
using the MDP and the traditional Monte Carlo simulation
model is presented. The Monte Carlo reinforcement learn-
ing (MCRL) algorithm applied to the same problem is then
introduced. In “Model description” section, we present the
evaluation method, which consists of a simulation of a fleet
of military Truck. Finally, we show the numerical results
comparing our algorithm’s performance to the referred
one.
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Model description

Problem description

The problem can be described as equipment that has multiple
non-identical components in a general structure. These com-
ponents are replaced several times during the life time of the
equipment. The downtime is defined as the non-productive
time, which is the time that the system is not operational
due to failure or preventive action. The cost is not relevant
to make the replacement decisions, but the downtime is to
be minimized, in other words the optimal replacement deci-
sions are made by minimizing the non-operational time of
the system. The replacement strategies of interest have the
following assumptions:

1. The equipment is composed of eight statistically inde-
pendent components.

2. The time to replace a failed component is longer than the
time of replacing it preventively. In addition, the time to
replace the whole system or a group of neighbor com-
ponents is less than the sum of times to replace each
component separately. This assumption is relevant to the
third and fourth strategies that are presented in the next
section.

3. There are replacement opportunities at fixed intervals,
for example when a planned overhaul takes place. This
is relevant to the fourth strategy.

The paper presents four different strategies where the first
one is a corrective maintenance, whereas the other three are
preventive. The four strategies are described as follows:

Strategy I: It is based on corrective maintenance where
every component is replaced at failure.
Strategy II: It is based on preventive maintenance where
every component is replaced at failure and at replacement
intervals Ti for each component i . In other words, every
component is replaced at failure if it occurs before Ti ;
otherwise, every component is replaced at Ti . In the pub-
lished paper (our reference), these replacement intervals
are obtained by minimizing Di , for each i separately.
Di is the downtime per unit time for each component
i. Ti is obtained by solving the following optimization
problem:

argminTi Di = tpi · (1 − F (Ti ) + t fi · F (Ti )

(Ti + tpi ) · (1 − F (Ti ) + [
(t fi + E [t |t ≤ Ti ])

] · F (Ti )
for every i (1)

where tpi is the time to replace preventively the compo-
nent i , t fi is the time to replace the component i at failure,
F (Ti ) is the probability of failure of component i at time
Ti and E [t |t ≤ Ti ] is the expected time to failure given
that it occurs before Ti (Abdel Haleem andYacout 1998).
It is to be noted that the solution of the optimization prob-
lem that is given by Eq. (1) leads to a local optimal times
to failures of the system, since the optimal time to replace
each component is obtained separately and without tak-
ing into consideration a system optimization approach.
Equation (1) is used in the reference model only. In our
proposed model, the optimal replacement times Ti are
obtained through the MCRL technique.
Strategy III: It is based on strategy II, to which it is added
a scheduled overhaul. In other words, as strategy II, every
component is replaced at failure and at replacement inter-
vals Ti for each component i but also, the whole system
is replaced at a known fixed time. The time to overhaul
the whole system is ts <

∑
tpi . The similarity between

these two strategies permits the analysis of the results of
the MCRL model, as is shown in the next sections.
Strategy IV: This is a group based strategy carrying a
preventive replacement opportunities for other compo-
nents. When a component fails, components that are
in the neighbourhood, are also replaced together, or
when a component has reached or passed an age control
limit.

Reinforcement learning model

Markov decision process

Markov decision process is a formalism to describe a sto-
chastic dynamic system, which has five main components:

1. The discrete state space of the system denoted as S . We
denote the state at time t as st ∈ S.

2. A set of actions that depends on a given state denoted
asA (s). We denote the action at time t as at ∈ A (st )

3. The transition probabilities of the system denoted as
p(st+1|st , at ), which gives the probability of being in st+1

given that the system was in st and an agent performs an
action at .

4. The reward function (formaximization problem) denoted
as R (st , at ), which is the reward of performing action at
at state st

123



J Intell Manuf

Δ: decision epoch
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Fig. 1 Intermediate reward formulation by using the uptime and downtime trade-off

5. A discount factor γ ∈ (0,1). If the problem is defined in
a finite horizon, then the discount factor can be equal to
one.

A deterministic policy function π, which defines the behav-
ior of an agent is defined as at = π (st ). An objective

function is defined as Fπ = Eπ

[∑T
t=0 γ t · R (st , π(at ))

]

when it follows a policy π. The objective of this model-
ing method is to find the optimal policy π, that maximizes
Fπ . In other words, we search for F∗ = max

π
Fπ . The

action-value function or Q-function is defined as the value
of taking action at in state st under a policy π denoted as

Qπ (st , at ) = Eπ

[∑T
t=0 γ t · R (st , π(at ))|st , at

]
. The opti-

mal action-value function Q∗ is expressed as Q∗ (st , at ) =
max

π
Qπ (st , at ) ,∀st ∈ S & ∀at ∈ A (Sutton and Andrew

1998). Hence, the optimal policy can be derived directly from
Q∗. In other words, a∗

t = π∗ (st ) = argmax
a

Q∗ (st , a) (Sut-

ton and Andrew 1998; Powell 2007).

Markov decision process formulation

We give the MDP formulation for each strategy. Since the
reinforcement problem ismodel-free, whichmeans that there
is no knowledge about the state-transition probabilities, we
formulate only the state, action and reward function compo-
nent.

MDP formulation of strategy II Let G j denote the age of
component j . Let w j be the status of a component j . Let
w j = 1 denotes a failure, whereas w j = 0 denotes a normal
status. Let N be the number of components in the system.
Then, the state of the system at time t is the vector defined as
follow:

st = (G1, . . . ,GN , w1, . . . , wN ) . (2)

Let a j denotes if there is a PM action or not on a component
j . let Tj be a threshold on the age of a component j that per-
mits the determination of action a j . We assume that a j = 1
corresponds to PM action, whereas a j = 0 corresponds to
“do-nothing” action. Then, a j is defined by the following
rule:

a j =
{
1, i f G j ≥ Tj

0, i f G j < Tj
. (3)

Thus, the action on the system at time t is the vector

at = (a1, . . . , aN ) . (4)

For the choice of the reward function, it is formulated by
using a trade-off between uptime (productive time of a
physical asset) and the downtime (non-productive time of
a physical asset). More precisely, when there is a preven-
tive replacement at time t for component j , the system goes
down for tp j time, which is equivalent to a loss equal to the
time to replace preventively. This downtime is applied as a
penalty for the agent when choosing the preventive action.
Similarly, when there is a failure at time t for component
j , the system goes down for t f j time, which is equivalent
to a loss equal to the time to replace due to failure. This
downtime is applied as a penalty for the agent when choos-
ing the “do-nothing” action but failure occurs at that interval
(See Fig. 1).

However, there is a scaling problem as tp j and t f j are
much smaller than �, that is the time interval between two
decisions epoch which is chosen such that there aren’t two
different components that fail during that time interval. There
are two ways to choose �: we can either diminish the time
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interval between two epochs�, or we can scale tp j such that
it has at least the same time period than�. If we choose on the
first option, the state space becomes larger which increases
the computational time of the MCRL algorithm. For that
reason, the second option which is the scaling method is
chosen. Hence, the downtime are scaled by maintaining the
ratio

tp j
t f j

, which represents the trade-off between two actions,
the preventive replacement and the “do-nothing” until fail-
ure. The scale factor α j = �

tp j
is chosen, and tp j is scaled

such that it is equal to �. We denote the ceiling function
as �x	 = min {n ∈ N|n ≥ x}. Hence, we have the following
reward function

R (St , at ) =

⎧
⎪⎨

⎪⎩

− α j ·tp j , i f a j = 1 (5)

− α j ·� ·
⌈
t f j
�

⌉
, i f w j = 1 & a j = 0 (6).

�, otherwise (7)

The condition in Eq. (5) represents the preventive replace-
ment action of component j which is taken before a failure
occurs. The condition in Eq. (6) means that the failure
of component j occurs before the preventive replacement.
Equation (7) represents the uptime as a reward since no event
caused the downtime to occur.

MDP formulation of strategy III Let G j denote the age of
component j . Let w j be the status of a component j . Let
w j = 1 denotes the failure, whereas w j = 0 denotes the
normal status. Let O = 1 denotes if there is a scheduled
overhaul, whereas O = 0 denotes no scheduled overhaul.
Let N be the number of components in the system. Then,
the state of the system at time t is the vector defined as
follow:

st = (G1, . . . ,GN , O, w1, . . . , wN ) . (8)

The action on the system are defined as

at = (a1, . . . , aN ). (9)

The same idea as in strategy II is applied to formulate the
reward function, which is

R (St , at )

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− α j ·tp j , i f a j = 1& O = 0 (10)

− α j ·� ·
⌈
t f j
�

⌉
, i f w j = 1& a j = 0& O = 0 (11).

− α j ·� ·
⌈

β·∑N
i=1 tpi
�

⌉
, i f O = 1 (12)

� otherwise (13)

.

The condition in Eq. (10) represents that the preventive
replacement action of component j before failure and
without scheduled overhaul. The condition in Eq. (11)
means that the failure of component j occurs before

the preventive replacement time and the scheduled over-
haul. The condition in Eq. (12) represents the scheduled
overhaul. The given parameter βε (0, 1) comes from the
second assumption in the “Problem Description” section,
which states that the time to replace the whole system
is less than the sum of times to replace each compo-
nent separately. The α j parameter is defined in the same
manner as in strategy II. Finally, Eq. (13) represents the
uptime as a reward since no event that caused downtime
occurred.

MDP formulation of strategy IV The notation to model the
group based strategy in this section is inspired from (Jia
2010). Let G j denote the age of component j . Let w j be
the status of a component j . Let w j = 1 denotes the fail-
ure, whereas w j = 0 denotes the normal status. Let N be the
number of components in the system. Let K be the number of
groups in the system. Let Ni be the number of components in
group i . Let φi be the set of components’ indexes in group i .
From the published paper (Abdel Haleem and Yacout 1998),
the following groups are formed: (φ1, φ2, φ3, φ4, φ5) =
({1, 3} , {3, 8} , {3, 5} , {7, 6} , {4, 2}).

Then, the state of the system at time t is the vector defined
as follow:

st = (G1, . . . ,GN , w1, . . . , wN ). (14)

The action on the system are defined, identically to strategy
II, as

at = (a1, . . . , aN ). (15)

The formulation of the reward function is defined as follow

R (St , at )=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− α j ·β · ∑

l∈φ j

t pl , i f ak = 1& k ∈ φ j (16)

− α j ·� ·
⌈

β·∑l∈φ j
t fl

�
,

⌉
i f wk = 1& ak =0& k ∈ φ j (17),

�, otherwise (18)

The condition in Eq. (16) represents the preventive replace-
ment action taken for component k, which belongs to the
group j , before a failure occurs. The condition in Eq. (17)
means that a failure occurred to component k, which belongs
to the group j , before the preventive replacement time. The
given parameter βε (0, 1) is defined in the same manner as
before. The α j parameter is defined as α j = �

β�
∑

l∈φ j
t pl

.

Finally, Eq. (18) represents the uptime as a reward, since no
event that caused downtime occurred.

MonteCarlo reinforcement learning In themodel-free prob-
lem setting, Monte Carlo method is based on averaging
sample returns from a simulated experience. It directly learns
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from episodes generated by a policy derived from an esti-
mated Q-function. It can be only applied to episodic MDPs,
which means that all simulated episodes must terminate.
Since the objective is to find the optimal deterministic policy
for the preventive maintenance strategies without a complete
knowledge of the environment, a model-free control algo-
rithm is applied. This algorithm optimizes the action-value
function of an unknown MDP. The parameters of the MDP
are its states, its actions, the time-to-failure found from actual
data, or modeled by any distribution function, for exam-
ple the Weibull probability distribution of each component,
and finally the reward function, which depend on the action
chosen by the agent given the current state. The on-policy
first-visit Monte Carlo control algorithm for ε-soft policy is
applied. This is a well-known algorithm in the model-free
control problem in the Reinforcement Learning field. The
algorithm starts with a stochastic policy and converges to a
deterministic one as the algorithm generates new episodes
from the current policy. A stochastic policy π is defined as
a mapping from each state st ∈ S and action at ∈ A to the
probability π(at |st ) of taking action at in state st . (Sutton
and Andrew 1998).

The algorithm’s main process has two steps that are
related to each other. On one hand, it evaluates a gener-
ated policy, and on the other hand, it improves the current
policy by taking greedy action with an exploration mea-
sure, which consists of taking another action, different
than the greedy one, with a low probability. The proba-
bility of choosing another action decreases hyperbolically.
This process is described as follow: First, from the esti-
mated action-value function Q, we derive the corresponding
policy, which permits to generate a new episode. Dur-
ing the episode generation, which is different for strategy
II, III and IV, an immediate reward r is chosen form the
reward function that we defined in the MDP formula-
tion section. Then, the generated policy is evaluated. At
the first time-step t where the state st and action at are
visited, a counter is incremented such that N (st , at ) ←
N (st , at ) + 1, total return S (st , at ) ← S (st , at ) + Gt , and
the state-action value function is evaluated by Q (st , at ) ←
S (st , at ) /N (st , at ).

The policy is then improved by taking ε-greedy action
such that

π (at |st ) =
{
1 − εt + εt|A(s)| i f a = a∗

εt|A(st )| i f a �= a∗

}

, (19)

where a∗ = argmaxaεA(st ) Q(st , a) (Sutton and Andrew
1998).

Our decision making problem involves a fundamental
tradeoff: exploitation,which consists ofmaking the best deci-
sion given current information, whereas exploration, which
consists of gathering more information about the system
under study. Hence, we have to gather enough informa-
tion about the system under study in order to make the
best decisions. A greedy algorithm chooses action with the
highest value of the Q-function given in the current state:
at = argmax

a
Q∗ (st , a). In this context, the algorithm does

only the exploitation part. However, by adding the notion of
stochastic policy, which implies that instead of only staying
with the best action forever, we can explore—gather more
information—and change the action as we learn more about
the system. This is especially essential at the beginning of
the estimation of the Q-function. This is what the ε-greedy
algorithm does. The algorithm is greedy at the limit with infi-
nite exploration (GLIE), which is proven to converge to the
optimal policy if the Robbins–Monro conditions (Szepes-
vari 2010) for the exploration is met. We choose εt = 1

t ,
which guarantees optimal convergence as

∑∞
t=0 εt = ∞ and∑∞

t=0 ε2t < ∞ are satisfied (Tsitsiklis 2003).
Algorithm 1 shows the complete pseudo code of the

model-free control algorithm. It is adapted andmodified from
the pseudocode in (Sutton and Andrew 1998). The algorithm
is implemented by using MATLAB.

It is assumed that each component failure probability
is independent, the algorithm is used to learn and find
the optimal replacement time T RL

i for each component
seperately. In order words, the algorithm searches for the
optimal Q-function for each component, and T RL

i that cor-
responds to the age where the value of the action ‘replace
preventively’ is higher than the value of the action ‘do-
nothing’.
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Model evaluation description

Based on the gathered times to failure of the different com-
ponents, the time-to-failure probability distribution for each
component is modeled by aWeibull cumulative density func-
tion.

P (t; λi , ki ) is the Weibull probability density function of
component i , with scale and shape parameters λi and ki ,

respectively. Table 1 shows the mean time to failure and
the Weibull’s distribution’s parameters for each component.
Table 2 shows the values of the replacement times at failure,
t fi , the values of the planned replacement time tpi , and the
reference replacement times Ti that are obtained from Eq. 1,
and are used in the reference model.

To evaluate the performance of the reference model and
theMCRLmodel,we apply a discrete event simulationwhere
the time interval between every two decision epochs is 5h.

Table 1 The parameters of Weibull density function for each component

Component

Tire Transmission Wheel Coupling Motor Brake Steering wheel Shifting gears

Mean 2361.80 991.70 708.50 1399.90 342.60 3917.50 817.70 2037.00

Lambda (scale) 2365.08 996.88 713.55 1406.84 343.76 3933.12 828.19 2040.95

K (shape) 414.16 109.25 79.81 115.21 169.81 143.60 43.83 296.48

Table 2 Data for simulation

Component

Tire Transmission Wheel Coupling Motor Brake Steering wheel Shifting gears

t fi 2 6.5 2.5 6 5 3.5 3 3.5

tpi 0.4 5.42 0.625 0.857 1.25 0.7 0.429 0.875

Ti 1440 1830 At failure 2160 248 2250 306 1400

123



J Intell Manuf

This value is chosen because the probability that two com-
ponents will fail during this time interval is approximately
zero. The simulation for all the strategies have three counters,
where the downtime counter keeps track of the downtime of
the system, the failed component counter keeps track of the
number of failed components, and the preventive counter that
keeps track of the number of preventive replacement for each
component. The simulation is run for 100,000h.

Simulation of strategy I The input parameters are t fi as in
Table 2, the time interval between two inspections (5h), the
Weibull’s distribution parameters as in Table 1, or the actual
data of the times to failures, and the simulation running time
(100,000h).

At each time period, a random time-to-failure from a
Weibull probability density function (λi , ki ) for each com-
ponent i , is generated. For each component, if the generated
time-to-failure is larger than the current component’s age,
then there is no failure and we continue to the next time
period, whereas if the generated time-to-failure is smaller
than the current component’s age, then there is a failure, the
simulation reinitializes to 0 the age of the component that
failed, t fi is added in the downtime counter, and 1 is added
to the component counter of the failed component.

The model’s outputs are the total downtime in 100,000h,
the number of failures of each component, and the number
of preventive replacements.

Simulation of strategy II The inputs are the same as strategy
I. At each decision epoch, a random time-to-failure is gener-
ated from a Weibull probability density function (λi , ki ) for
each component. For each component, the following condi-
tion statement is used: the generated time-to-failure is larger
than the current component’s age (True), and the current time
is smaller than the optimal replacement time (True). By eval-
uating this condition statement, four cases are considered:

Case 1: when the condition statement is true and true,
then the simulation continues to the next time period.
Case 2: when the condition statement is false and true,
then there is a failure, and t fi is added in the downtime
counter, 1 is added to the component counter of the com-
ponent that failed, and the age of the component that
failed is reinitialize to 0.
Case 3: when the condition statement is true and false,
then the equipment is replaced preventively, tpi is added
in the downtime counter, and the age of the component
that was replaced preventively, is reinitialize to.
Case 4: when the condition statement is false and false,
the generated time-to-failure and the optimal replace-
ment time are compared: if the optimal replacement time
is smaller than the generated time-to-failure, then tpi is

added in the downtime counter. The age of the compo-
nent that was replaced preventively is reinitialized to 0.
Otherwise, t fi is added in the downtime counter, 1 to the
component counter of the component that failed, and the
age of the component that failed is reinitialize.

The outputs are the total downtime and the number of
failures of each components.

Simulation of strategy III The inputs are the same as for
strategy I and II. At each decision epoch, a random time-to-
failure from a Weibull probability density function (λi , ki )
for each component i , is generated. For each component, the
following condition statement is used: If the generated time-
to-failure is larger than the current component’s age (True),
and the current time is smaller than the optimal replacement
time (True), and there is not a scheduled overhaul (True). By
evaluating this condition statement, we will have four cases:

Case 1: when the condition statement is true and true and
true, then we continue to the next time period.
Case 2: when the condition statement is false and true
and true, then there is a failure, t fi is added to the down-
time counter, 1 is added to the component counter of the
component that failed, and the age of the component that
failed is reinitialize to 0.
Case 3: when the condition statement is true and false
and true, then tpi is added to the downtime counter. The
age of the component that was replaced preventively is
reinitialized to 0.
Case 4: when the condition statement is true and true
and false, then the overhaul schedule takes place all the
components are replaced, and ts is added in the downtime
counter. The age of all the components is reinitialized to
0.
Case 5: when the condition statement is false and false
and true, a comparison between the generated time-to-
failure and the optimal replacement time is executed: if
the optimal replacement time is smaller than the gener-
ated time-to-failure, then tpi is added in the downtime
counter. The age of the component that was replaced
preventively is reinitialized to 0. Otherwise, t fi is added
in the downtime counter, 1 is added to the component
counter of the component that failed, and the age of the
component that failed is reinitialized to 0.
Case 6: when the condition statement is true and false
and false, a comparison between the optimal replacement
time and the scheduled replacement time is executed: if
the optimal replacement time is smaller than the sched-
uled overhaul time, tpi is added in the downtime counter.
The age of the component that was replaced preven-
tively is reinitialized to 0. Otherwise, ts is added in the
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downtime counter. The age of all the components is reini-
tialized to 0.
Case 7: when the condition statement is false and true
and false, a comparison between the generated time-to-
failure and the scheduled overhaul time is executed: if the
generated time-to-failure is smaller than the scheduled
overhaul time, then t fi is added in the downtime counter,
1 is added to the component counter of the component
that failed, and the age of the component that failed is
reinitialized to 0. Otherwise, we consider that the sched-
uled overhaul time takes place, all the components are
replaced, and ts is added in the downtime counter. The
age of all the components is reinitialized to 0.
Case 8: when the condition statement is false and true
and false, the smallest value among the generated time-
to-failure, the scheduled overhaul time and the optimal
replacement time are identified. The same process of the
components’ replacement and the update of the counters
are executed as in case 7.

The outputs of the simulation are the total downtime and
the number of failed components for each one.

Simulation of strategy IV The input parameters are t fi , tpi ,
Ti as in Table 2, the time interval between two decision
epochs (5h), the Weibull’s distribution parameters as in

Table 1, the simulation running time (100,000h), and the
formed groupswhich are {(1,3), (3,8), (3,5), (7,6), and (4,2)}.

The process is similar to policy II. Except that when
there is failure or preventive replacement, all the components
belonging to the same group of the failed or preventively
replaced component, are also replaced, In the case of failure,
α · ∑

i t fi , where 0 < α < 1 is calculated, whereas in the
case of preventive replacement, α · ∑

i
t pi , where 0 < α < 1

is calculated.
The simulation outputs are the total downtime and the

number of each failed component.

Analysis of the results

Comparison of the performance of each strategy is performed
between the reference and the MRCL simulations. First, we
run the simulations by using the Ti given in Table 2 for strat-
egy II, III and IV. The results correspond to the reference
simulation. Then, the simulation is run with the same set-
tings, but the optimal replacement times are obtained through
the MCRL.

In Fig. 2, a comparison between the results of strategy II is
presented. The histogram represents the total downtime. The
solid-line graph represents the number of failed components,
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Fig. 2 Comparison between the reference and the MCRL results for strategy II
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Fig. 3 Optimal replacement times for strategy II

whereas the dashed-line graph represents the number of com-
ponents that was replaced preventively. It can be seen that
the reference simulation has a total downtime of 1957h with
280 failed components and 806 components replaced due
to preventive action, whereas the MCRL simulation yields
1241.9h with 91 failed components and 685 components
replaced due to preventive action. The MCRL outperforms
the reference simulation by 36.54% of improvement in terms
of total downtime, 189 less failures, and 121 less components
replaced.Moreover, theMCRL simulation, not only provides
lower total downtime, but also lower cost since both of the
number of failed components and preventively replaced com-
ponents are lower. In order words, the MCRL simulation has
less non-productive hours, and lower replacement cost. In
the MCRL simulation, although the agent makes decision in
an infinite horizon, 1000 episodes were sufficient in order to
reach the final results. Contrary to the reference model, the
virtual agent finds the optimal policy by trial and error in the
sense that it is not based on an expected value while in the
Monte Carlo simulation reference model, the optimization is
done locally for every component separately since the hori-
zon is finite and based on an expected value which does not
take into account the variance of the times to failure.

Figure 3 represents a histogram where the light colored
bar is the reference simulation for each component, and the

dark colored bar is the MCRL. First, it is observed that there
is practically no difference between the optimal replacement
times for the motor component. However, for the other seven
components there is a clear difference in the results. For the
transmission, wheel rim and coupling components, the ref-
erence replacement times are much larger than the MCRL
replacement times. They exceed largely their component’s
corresponding mean time between failures (MTBF). Their
probability of failure at that time is equal to one, whichmeans
that these three components are replaced at failure in the
reference simulation, whereas in theMCRL, the failure prob-
ability at the replacement time are 0.552, 0.02 and 0.0015
for transmission, wheel rim and coupling, respectively. The
failure probability at the replacement time decreases as the
ratio tp/tf decreases, which means that as the preventive
replacement becomes more advantageous, the agent chooses
to replace preventively earlier than later. This pattern is also
found for the other components too. This result is expected
since the agent chooses the actions that are directly related to
the trade-off between the penalty of replacing preventively
and the penalty of replacing due to failure.

Secondly, the results of the strategy III are compared. The
agent learns and finds the optimal way to react by generating
1000 episodes. Table 3 shows the total downtime for the ref-
erence simulation and the MCRL method for different value
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Table 3 Comparison of system
downtime obtained when using
the reference simulation and the
MCRL method for strategy III
with different overhaul times

Schedule overhaul System downtime

Strategy III—reference Strategy III—MCRL

500 2002.1 1928.7

1000 1946 2309.5

1500 2167.7 1592.8

2000 2006.2 1566

2500 1870.5 1416.1

3000 2142.6 1519.3

3500 1934.7 1417.2

4000 1945.1 1426

4500 2005.4 1337.9

5000 1993.2 1482.5

Table 4 Optimal replacement
times for the eight components
obtained by the MC reference
and the MCRL in strategy III

Component name Strategy III—reference Strategy III—MCRL

Tire 1440 2340

Transmission 1830 990

Wheel rim At failure 685

Coupling 2160 1375

Motor 248 335

Brake 2250 3805

Steering wheel 306 725

Shifting gears 1400 2010

of scheduled overhaul with α = 0.9. The reference simula-
tion achieves the lowest downtime as 1870.5 at a scheduled
overhaul of 2500h, with 216 failed components, and 964
components replaced due to preventive action, whereas the
MCRL achieves the lowest downtime of 1234.3 at a sched-
uled overhaul at 4500h, with 34 failed components, and
826 components replaced due to preventive action. In this
problem too, the MCRL method outperforms the reference
simulation with a 34% of improvement in terms of total
downtime. Moreover it is observed that the MCRL solution
produces better performance both in terms of downtime and
cost. Table 4 shows the optimal replacement times for the ref-
erence simulation and the MCRL algorithm for strategy III.
The solution are practically the same as strategy II because,
as described earlier, strategy III is strategy IIwith a scheduled
overhaul. This shows that the MCRL algorithm performs as
expected.

Thirdly, the results in Fig. 4 belong to strategy IV. The
agent learns and finds the optimal way to behave by gen-
erating 1000 episodes. The reference simulation has a total
downtime of 2168.2h, with 181 failed components, and 1532
components replaced due to preventive action, whereas the
MCRL approach yields 1700.2h of downtime, with 85 failed
components, and 1430 components replaced due to preven-
tive action. TheMCRL outperforms the reference simulation

by 21.58% of improvement in terms of total downtime, with
96 less failures, and 102 less components replaced. The
MCRL simulation produces better performance both in terms
of downtime and cost.

Finally, the optimal replacement times of strategy IV are
given in Fig. 5. The replacement times are much lower in
the MCRL than in the reference simulation. This is due to
the structure of the group. For example, for group 1, which is
composed of tire and wheel rim, theMTBF of a tire is 2361.8
whereas the wheel rim’sMTBF is 708.5. Since, theMTBF of
the wheel rim is much smaller than the tire, the replacement
policy depends largely on the failure or preventive action
done to wheel rim. Hence, the optimal replacement time of
the tire will follow thewheel rim’s optimal replacement time.
This logic follows for the other groups as well. Hence, the
replacement strategy of the components of one group follows
the component that has the lowest MTBF.

In Figs. 6 and 7, the results of different strategies with
the reference and the MCRL simulations are compared,
respectively in both figures. The histogram represents the
total downtime for all the strategies. The solid line-graph
represents the number of failed components, whereas the
dashed-line graph represents the number of components
that are replaced preventively. In Fig. 6, strategy II, III
and IV outperform strategy I, the corrective maintenance,
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Fig. 5 Optimal replacement times for strategy IV
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Fig. 6 Evaluation of different
strategies—reference
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in terms of total downtime. This shows that preventive
maintenance’s performance is higher than the corrective
maintenance. Strategy III has the lowest total downtime
among the four strategies with 1870.5h of downtime. For
the MCRL approach, strategy II has the lowest total down-
time. The MCRL approach dominates in all dimensions, in
downtime and in cost, since it has lower downtime, for lower
number of failed components, and lower number of preven-
tive replacements.

Conclusion

This paper presents an application of Monte Carlo rein-
forcement learning to find optimal replacement times for an
equipment composed of multiple non identical components
which have different time-to-failures. It was found that the
MCRL method outperforms the reference model in terms of
total downtime, and also in term of cost. The reason is that

the analytical formula of the reference method has an open
form; hence it is solved by using the iterative method of
the traditional Monte Carlo simulation where its solution is
local due to this approximation. Whereas, the MCRL model
directly the problem and obtain an optimal solution for all the
three strategies. Thus, theMCRL is proven to converge to the
optimal solution. It was also found that, indeed, the planned
maintenance method is better than the corrective one.

The advantage of the MCRL method is:

1. A mathematical formula is not needed to find the opti-
mal replacement time for strategies II, III and IV. In other
words, the traditional reference simulation solves for-
mula (1) in order to find the replacement time for each
component by minimizing the downtime only for that
component, which is only locally optimal.

2. The problem is modeled by using a MDP framework,
but it is solved without the knowledge of the transition
probabilities and also without a reward function.
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Fig. 7 Evaluation of different
strategies—MCRL
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3. The problem is solved by using a MCRL algorithm,
which converges to the optimal solution.

Areas of further research are: (i) to implement the reinforce-
ment learning for real-time learning and control for this type
of problem since it can be well implemented for autonomous
control. (ii) Since it was assumed that the failures are inde-
pendent among components, a single agent was needed. By
relaxing this assumption, one can solve the current problem
by applying a multi-agent reinforcement learning algorithm
where failures of the components are dependent. (iii) The
use of the information coming from condition monitoring
to update the information needed by the agent in order to
make a decision about the action to take. (iv) To apply con-
dition based maintenance (CBM) for maintenance problem
of equipment composed of multi-non-identical components.
(v) Extending the current work in order to include the notion
of resilience. This notion refers to the ability of the equip-
ment to recover its functions after partial damage, thus
leading to successes from failures (Zhang and Van Lutter-
velt 2011).
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