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Abstract
Generating synthetic baseline populations is a fundamental step of agent-based modeling

and simulation, which is growing fast in a wide range of socio-economic areas including

transportation planning research. Traditionally, in many commercial and non-commercial

microsimulation systems, the iterative proportional fitting (IPF) procedure has been used for

creating the joint distribution of individuals when combining a reference joint distribution

with target marginal distributions. Although IPF is simple, computationally efficient, and rig-

orously founded, it is unclear whether IPF well preserves the dependence structure of the

reference joint table sufficiently when fitting it to target margins. In this paper, a novel

method is proposed based on the copula concept in order to provide an alternative

approach to the problem that IPF resolves. The dependency characteristic measures were

computed and the results from the proposed method and IPF were compared. In most test

cases, the proposed method outperformed IPF in preserving the dependence structure of

the reference joint distribution.

Introduction
Large-scale micro-simulations using agent-based models have gained wide popularity in recent
years in various fields of socio-economic studies [1] including transportation planning [2] and
land use [3]. Generating synthetic baseline populations is a key step in agent-based modeling
and simulation. An agent in a microsimulation is described by a set of attributes such as age,
income, residence type/region, and so on. These attributes are usually dependent on each
other. Hence, the synthetic population generation can be considered as creating a set of agents
with the attributes drawn from a joint distribution. However, a difficult element of the syn-
thetic population generation is obtaining a relevant data set. As described in [4], there are two
typical types of data sets available: disaggregated census data in form of PUMS (Public Use
Micro Samples) and aggregated data in form of summary tables in census reports. PUMS con-
tains individual samples of small size (typically less than 5% of population), which can be used
to infer the joint distribution of the attributes. On the other hand, aggregated data in summary
tables exhibits marginal distributions of attributes specific to each analysis zone of interest. As
samples in PUMS data are chosen from a rather larger area (like state or nationwide) than
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target zones, the reference joint distribution from PUMS is often inconsistent with marginal
distributions from the aggregate data of each zone. Beckman et al. [5] proposed to combine the
disaggregated data with the aggregated data using IPF (Iterative Proportional Fitting) proce-
dure. The primary concept of IPF is to maintain the dependence structure from the disaggre-
gated data and alter the joint distribution to fit the marginal distribution of the attributes from
the aggregated data. (We will use the term ‘marginal distribution’ and ‘margin’ interchange-
ably.) Since the inception by Beckman et al, there has been much research following this path:
see [4,6]. IPF, which is briefly reviewed in a later section, is a very efficient and powerful tech-
nique for constructing a joint distribution table from a reference joint distribution and target
margins. (In population synthesis area, the term ‘contingency table’ is often used to refer a
table with the frequency of population in each cell. Since a contingency table can be easily con-
verted to a distribution table (a probability mass function of discrete random variables), we will
use the concept of distribution table instead.) Although the IPF procedure is very popularly in
a variety of applications including synthetic population generation, it has some limitations as
well. In this paper, we propose a novel approach based on copula theory for the same problem
of constructing a joint distribution in place of IPF. It should be noted that the proposed
approach can deal with only ordinal variables, not categorical ones.

Recently, some research papers have used copula theory for microsimulation of traffic behavior
(e.g., see [7,8], in which the copula was used in different contexts. Kao et al. [9] also proposed a
copula based approach to synthesizing households in order to preserve the dependence structure.
However, they combine target margins using Gaussian copula, whose covariance matrix is deter-
mined from the reference joint distribution (possibly represented by samples). A limitation of this
approach is that some dependency information is lost because of the intermediate Gaussian copula.
A similar approach can be found in [10], which utilizes Copula for representing temporal depen-
dence structure among time series of stream flow in a geographic region. These literature uses
some well-known copula functions such as Gaussian or Gumbel copula, then parameters of the
copula function are chosen to fit the data. On the other hand, in this paper, we propose to directly
use the empirical copula as explained in “Copula based approach to joint fitting problem” section.

Problem Description
Though, in synthetic population generation, there are many research issues such as house-
hold–individual hierarchy and aggregation data inconsistency, the problem focused in this
paper is the construction of a joint distribution from a given reference joint distribution and
target margins. Although the approach is applicable to multi-dimensional distributions with-
out significant modification, the description in this paper is confined to two dimensional set-
ting, for simplicity. For the most part of this paper, we will assume that target margins are
discrete distributions, then the procedure will be extended to continuous variables in “Distribu-
tion view of CBJF and extensions” section.

In order to formally describe the problem, the following notations are introduced. Let (X,Y)
be a pair of discrete random variables that represent the attributes of the reference population.
X and Y can have values from {x1,x2,. . .,xm} and {y1,y2,. . .,yn} respectively. We assume that X
and Y are ordinal or interval variables, possible values of which have natural ordering. (For the
variable types, readers are referred to [11].) The possibility of relaxing this assumption to han-
dle categorical variables will be discussed in the conclusion section as a further research topic.

Let ð~X; ~YÞ be a pair of random variables representing the attributes of the target population.

For simplicity, we assume that ~X and ~Y have the same values as X and Y, respectively. Note
that this assumption can be easily removed in the proposed approach by introducing a map-
ping between them. We will use the following notations, illustrated in Fig 1.
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• a = [ai,j]: anm×nmatrix denoting the reference joint distribution of (X,Y),

i.e. ai,j = P[X = xi, Y = yj]

• r = [ri]: target marginal distribution of ~X, i.e. ri ¼ P½~X ¼ xi�
• c = [cj]: target marginal distribution of ~Y, i.e. cj ¼ P½~Y ¼ yj�
• b = [bi,j]: anm×nmatrix denoting the target joint distribution of ð~X; ~YÞ,
i.e. bi;j ¼ P½~X ¼ xi; ~Y ¼ yj�

The reference joint distribution a can be either given directly or obtained from the detailed
disaggregated census data available in form of PUMS (by counting the samples in each cell),
while the target margins r and c are obtained from the aggregated data. From the input data {a,
r,c}, the goal is to find the target joint distribution b inheriting the dependence structure from
a while fitting it to the margins r and c. We call this problem a joint fitting problem. By defini-
tion, ai,j, ri, cj, bi,j are probabilities, meaning that they are nonnegative and sum to one. The fol-
lowing symbols are used to denote marginal summations:

Fig 1. Joint fitting problem.

doi:10.1371/journal.pone.0159496.g001
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• ai,+ = ∑jai,j: row margin of a, i.e. ai,+ = P[X = xi]

• a+,j = ∑iai,j: column margin of a, i.e. a+,j = P[Y = yj]

• bi,+ = ∑jbi,j: row margin of b

• b+,j = ∑ibi,j: column margin of b

Using these symbols, the constraints of the problem are to satisfy bi,+ = ri and b+,j = cj. The
goal of “preserving the dependence structure” in amay appear ambiguous. Quantitative measure
of this goal is differently defined in each method described in the following sections.

Brief Overview of IPF (Iterative Proportional Fitting)
IPF (Iterative Proportional Fitting) is a concise and efficient procedure to solve the joint fitting
problem described in the previous section. IPF has many names, including RAS algorithm,
matrix raking, matrix scaling, bi-proportional fitting, and so on. Since its introduction in by
Deming & Stephan [12], the properties of IPF has been studied thoroughly and used widely in
various fields including the synthetic population generation. Although there are some varia-
tions of IPF, its essence can be described using the following algorithm (Algorithm 1):

Algorithm 1 (IPF)
bi,j ai,j (Initialization)

While (convergence criterion is not met)
bi;j  bi;j

ri
bi;þ

for 8 i; j rowwise f ittingð Þ
bi;j  bi;j

cj
bþ;j

for 8 i; j columnwise f ittingð Þ
A common choice of convergence criterion is to measure the maximum deviation ε from

the given margins r and:

Fitting error ¼ maxi jbi;þ � rij þmaxj jbþ;j � cjj < ε ð1Þ

Ireland & Kullback [13] proved that if IPF procedure converges to a certain distribution
table under the given constraints on the marginal, then the resulting table minimizes the rela-
tive entropy (called the ‘discrimination information’ in their paper), as defined below:

RE ¼
X

i;j
bi;jlog

bi;j
ai;j

ð2Þ

Wong [14] investigated the reliability of IPF for use in geographical studies. Beckman et al.
[5] proposes using IPF to combine disaggregated data with aggregated margins from different
data sources. Following Beckman’s lead, much literature has been produced on adopting IPF
for population generation, as summarized in [4]. Despite the popularity and rigorous mathe-
matical analysis, IPF has some limitations, as follows:

• Convergence problem: Although this is rare in practical applications, IPF procedure may
not converge. Pukelsheim & Simeone [15] showed conditions when IPF may fail to converge
(i.e. when a can be permuted to a block diagonal structure in 2-dimensional case, as exempli-
fied below). Though IPF converges very fast in general as explained in [16], it may take many
iterations before reaching the desired level of fitting accuracy when there are cells with non-
zero initial probability that are eventually wiped out to zero.

• Zero margin / Zero cell problem: If any of ai,+ (or a+,j) vanishes to zero while ri (or cj,
respectively) is not, the IPF procedure fails. This is called zero margin problem. Furthermore,
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the zero cells in a do not have a chance to obtain positive probability mass during IPF proce-
dure. That is, if ai,j = 0, then bi,j = 0 always. A zero cell is not a problem in computational
sense, however it poses a semantic problem because a zero cell can be a result of underrepre-
sentation caused by the limited sample size. As a work-around, zero cells (and hence zero
margins) are replaced with a very small number at the initialization step.

• Dependence structure preserving:Most importantly, it must be seriously considered
whether IPF preserves well the dependence structure of the reference table a. Since there is
no strict relationship between minimizing the discrimination information and preserving the
dependence structure, minimum discrimination information does not guarantee the most
similar dependence structure. Although IPF converges to the solution table b which mini-
mizes the relative entropy subject to the marginal constraints, it does not necessarily mean
that the dependence structure captured in a is best transferred to b. In this paper a new
method is proposed to replace IPF and these methods are compared in terms of some depen-
dence measures which can capture the strength of relationships between variables.

Tables 1 and 2 show a small example joint fitting problem and a solution obtained by IPF
procedure. Inputs are the reference joint matrix a and the target margins r, c in Table 1. With
the convergence tolerance ε = 10−5, the output of IPF procedure is shown in Table 2, obtained
after more than 300 iterations. If a5,3 is changed to 0, the non-zero cells in amatrix are sepa-
rated in two groups: upper-left group and lower-right group. In this case, IPF procedure does
not come to convergence because probability mass in one group cannot be transferred to the
other group due to the barricade of zero cells. If we replace zero cells with a very small number
(10−20), IPF converges after 1000 iterations.

Copula Based Approach to Joint Fitting Problem
Copula, which was first coined by Sklar in [17] from a Latin word copularemeaning “to con-
nect or link”, is a popular tool for modeling dependence between random variables. This

Table 1. Input matrix a and target margins r, c.

Ref y1 y2 y3 y4 y5 [a+,i] [ri]

x1 0.04 0 0 0 0 0.04 0.07

x2 0.08 0.04 0 0 0 0.12 0.13

x3 0 0.12 0.08 0 0 0.12 0.15

x4 0 0 0.16 0 0.04 0.20 0.25

x5 0 0 0.04 0.2 0 0.24 0.27

x6 0 0 0.04 0.04 0.04 0.12 0.07

x7 0 0 0.04 0.04 0 0.08 0.06

[ai,+] 0.12 0.16 0.36 0.28 0.08 1 1

[cj] 0.16 0.17 0.30 0.25 0.12 1

doi:10.1371/journal.pone.0159496.t001

Table 2. IPF output bIPF.

IPF y1 y2 y3 y4 y5
x1 0.07 0 0 0 0

x2 0.09 0.04 0 0 0

x3 0 0.13 0.02 0 0

x4 0 0 0.167 0 0.083

x5 0 0 0.059 0.211 0

x6 0 0 0.019 0.014 0.037

x7 0 0 0.035 0.025 0

doi:10.1371/journal.pone.0159496.t002
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section begins by reviewing the foundation of the copula theory. Further details on the copula
can be found in [18]. A copula C(u,v) is a joint cumulative distribution function whose margins
are uniform (0,1) distributions, satisfying the following properties:

1. Uniform (0,1) margins:

Cðu; 0Þ ¼ 0 and Cð0; vÞ ¼ 0

Cðu; 1Þ ¼ u and Cð1; vÞ ¼ v

2. Monotonously increasing:

Cðu; vÞ � Cðuþ du; vÞ for any du > 0

Cðu; vÞ � Cðu; v þ dvÞ for any dv > 0

3. Rectangle inequality (non-negative probability for [u,u + du] × [v,v + dv]):

Cðuþ du; v þ dvÞ � Cðuþ du; vÞ � Cðu; v þ dvÞ þ Cðu; vÞ � 0 for any du; dv > 0

A copula can also be obtained from a joint distribution. Let FXY(x,y) = P[X� x, Y� y]
denote the joint cumulative distribution function of (X,Y). Furthermore, let FX(x) = P[X� x]
and FY(y) = P[Y� y] be the marginal cumulative distribution functions of X and Y respec-
tively. The copula of FXY(x,y) is defined by a function C(u,v) that satisfies the following:

FXYðx; yÞ ¼ CðFXðxÞ; FYðyÞÞ ð3Þ

Sklar’s theorem states that such a function C(u,v) exists, and if X and Y are continuous, C(u,
v) is uniquely determined. That is, by letting u = FX(x) and v = FY(y), the copula function asso-
ciated with FXY(x,y) can be obtained as follows:

Cðu; vÞ ¼ FXYðF�1X ðuÞ; F�1Y ðvÞÞ ð4Þ

However, if the variables are not continuous (like X and Y in this paper), then the copula C
is not unique; in this case, the values of the copula are uniquely determined at points (x,y), and
a copula C for which the properties (a)-(c) above holds can be obtained by interpolating the
values at these points [19]. The proof for the general n-dimensional case is outlined in [20].
When we speak of the copula of variables X and Y, we will mean the copula whose existence is
guaranteed using the bilinear interpolation, if one or both of the random variables are not
continuous.

Using the bilinear interpolation (detail procedure is explained in the last part of this chapter),
the copula function C(u,v) is obtained from the joint cumulative distribution function by remov-
ing the marginal information, meaning that C(u,v) extracts the dependence structure of the joint
distribution without the information specific to margins. This forms the perfect basis of applying
the copula to the joint fitting problem: the copula function derived from the reference joint distri-

bution of (X,Y) can be combined with the new target margins of ~X and ~Y to form the target joint

distribution of ð~X; ~YÞ. This is further elaborated with basic mathematical operations.
Let FXY(x,y) denote the joint cumulative distribution function of (X,Y), and let FX(x) and

FX(x) denote the marginal distribution of X and Y, respectively. Let C(u,v) be the copula
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function obtained via bilinear interpolation. If we set U = FX(X) and V = FY(Y), then C(u, v) is
the cumulative distribution function of (U,V). Now, the goal is to find the joint distribution of

ð~X; ~YÞ, whose marginal cumulative distributions are F~XðxÞ and F~YðyÞ. We would like to make

the dependence structure of the joint distribution of ð~X; ~YÞ as close to that of (X, Y) as possible.
For this reason, the same copula C(u, v) is applied to the margins F~XðxÞ and F~YðyÞ in order to

achieve the goal. Let ~U ¼ F~Xð~XÞ and ~V ¼ F~Yð~YÞ. Then, C(u, v) is used as the cumulative distri-

bution function of ð~U; ~VÞ.

F~X ~Yðxi; yjÞ ¼ P½~X � xi; ~Y � yj� ¼ P½F~Xð~XÞ � F~XðxiÞ; F~Yð~YÞ � F~YðyjÞ�
¼ P½~U � F~XðxiÞ; ~V � F~YðyjÞ� ¼ CðF~XðxiÞ; F~YðyjÞÞ

ð5Þ

The following symbols are introduced for denoting cumulative distributions:

• Ai;j ¼
Pi

k¼1
Pj

l¼1ak;l : cumulative distribution of (X, Y), i.e. Ai,j = P[X� xi, Y� yj]

• ui ¼
Pi

k¼1ak;þ: cumulative distribution of X, i.e. ui = P[X� xi] = FX(xi)

• vj ¼
Pj

l¼1aþ;l : cumulative distribution of Y, i.e. vj = P[Y� yj] = FY(yj)

• ~ui ¼
Pi

k¼1rk : cumulative distribution of ~X, i.e. ~ui ¼ P½~X � xi� ¼ F~XðxiÞ
• ~vj ¼

Pj
l¼1cl : cumulative distribution of ~Y, i.e. ~vj ¼ P½~Y � yj� ¼ F~YðyjÞ

• Ai;0 ¼ A0;j ¼ u0 ¼ v0 ¼ ~u0 ¼ ~v0 ¼ 0: for notational convenience

Because F~XðxiÞ ¼ P½~X � xi� ¼ ~ui and F~YðyjÞ ¼ P½~Y � yj� ¼ ~vj, we get

F~X ~Yðxi; yjÞ ¼ Cð~ui; ~vjÞ. Therefore:

bi;j ¼ P½~X ¼ xi; ~Y ¼ yj� ¼ Cð~ui; ~vjÞ � Cð~ui�1; ~vjÞ � Cð~ui; ~vj�1Þ þ Cð~ui�1; ~vj�1Þ ð6Þ

Hence, the target joint distribution b can be computed, if we have the copula function
C(u,v) obtained from a. Because Ai,j = P[X� xi, Y� yj] = P[U� FX(xi), V� FY(yj)] =
P[U� ui, V� vj] = C(ui,vj), the values of C(u,v) is uniquely defined only at each grid points
(ui,vj). Since ð~u; ~vÞ does not necessarily coincide with (u,v), C(u,v) should be estimated from
adjacent known grid points. For a given (u,v), the cell [ui,ui+1] × [vj,vj+1] containing (u,v) can
be found. The local parameters s and t 2 [0,1] are defined as shown in Eq (7) and Fig 2:

s ¼ u� ui

uiþ1 � ui

and t ¼ v � vj
vjþ1 � vj

ð7Þ

Then, C(u, v) is computed using a bilinear interpolation as below:

Cðu; vÞ ¼ ð1� sÞð1� tÞAi;j þ ð1� sÞtAi;jþ1 þ sð1� tÞAiþ1;j þ stAiþ1;jþ1 ð8Þ

With C(u, v) as defined in Eq (8), the following lemmas can be easily proved. (Proofs can be
found in S1 Text.)

Lemma 1. C(u, v) is at least C0 continuous at all locations in [0,1] × [0,1].
Lemma 2. C(u, v) satisfies the properties (a)~(c) of a copula function.
Hence, C(u, v) qualifies as a copula from the reference joint distribution a. The following

algorithm (Algorithm 2) is presented based on the copula, which we call copula based joint fit-
ting (CBJF).
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Algorithm 2 (CBJF)
Step 0 (Initialize)

u0 ¼ v0 ¼ ~u0 ¼ ~v0 ¼ 0; Ai;0 ¼ A0;j ¼ Bi;0 ¼ B0;j ¼ 0

Step 1 (Compute [Ai,j])
Ai,j = ai,j + Ai−1,j + Ai,j−1 − Ai−1,j−1 for i = 1,. . .,m and j = 1,. . .,n

Step 2 (Compute ½ui�; ½vj�; ½~ui�; and ½~vj�)
ui = ai,+ + ui−1 for i = 1,. . .,m
vj = a+,j + vj−1 for j = 1,. . .,n
~uk ¼ rk þ ~uk�1 for k ¼ 1; . . . ;m
~vl ¼ cl þ ~vl�1 for l ¼ 1; . . . ; n

Step 3 (Compute ½Bk;l ¼ Cð~uk; ~vlÞ�)
For each k = 1,. . .,m and l = 1,. . .,n

Find the cell (i,j) such that ð~uk; ~vlÞ 2 ½ui; uiþ1� � ½vj; vjþ1�
s ¼ ~uk�ui

uiþ1�ui and t ¼ ~v l�vj
vjþ1�vj

Bk,l = (1 − s)(1 − t)Ai,j + (1 − s)tAi,j+1 + s(1 − t)Ai+1,j + stAi+1,j+1

Step 4 (Compute [bk,l])
For each k = 1,. . .,m and l = 1,. . .,n

bk.l = Bk,l − Bk−1,l − Bk,l−1 + Bk−1,l−1
Shown in Table 3 is the output of Algorithm 2 (CBJF) applied to the input condition in

Table 1. It can be noted that some zero cells in amatrix get some probability mass by CBJF,

Fig 2. Bilinear interpolation.

doi:10.1371/journal.pone.0159496.g002

Table 3. CBJF output bCBJF.

CBJF y1 y2 y3 y4 y5
x1 0.063 0.007 0 0 0

x2 0.073 0.043 0.013 0.001 0

x3 0.022 0.076 0.050 0.002 0

x4 0.002 0.028 0.142 0.033 0.045

x5 0 0.008 0.047 0.164 0.051

x6 0 0.004 0.022 0.024 0.020

x7 0 0.004 0.025 0.027 0.004

doi:10.1371/journal.pone.0159496.t003
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unlike the result of IPF shown in Table 2. It can be interpreted as diffusion of probability
through the lens of copula upon the request of target margins.

Distribution View of CBJF and Extensions
The computational complexity of the above Algorithm 2 (CBJF) is O(T), where T = mn is the
total number of cells in the joint distribution table. Though it is a very efficient algorithm with
linear complexity proportional to the input/output size, the total number of cells T grows expo-
nentially as the dimension of target margins increases, which can easily lead to prohibitively
large matrices for storage and computation. However, in many practical high dimensional
distributions, non-zero cells are very sparse and this is the clue to handle high dimensional cases.
In order to exploit the sparsity of the joint distribution table, we need to re-organize Algorithm 2.

We will start with an interpretation of Algorithm 2 (CBJF). In step 2 of Algorithm 2, [ui]
and [vj] define a partition G on [0,1]x[0,1] space, shown as solid (blue) lines in Fig 3. [ai,j] is the
probability mass assigned to each cell Gi,j of the partition. The target margins r and c overlay a

new partition ~G defined by ½~ui� and ½~vj�, shown as dashed (red) lines in Fig 3. Step 4 of Algo-

rithm 2 can be interpreted as a “collection view”. In other words, the probability mass bi,j for a

cell ~Gi;j in the new partition is computed by collecting the probability mass of cells in G over-

lapping with ~Gi;j. For example, the cell ~G2;2 overlaps with G2,2, G2,3, G3,2, and G3,3. So, b2,2 is

computed by collecting probability mass from a2,2, a2,3, a3,2, and a3,3 in proportion to the ratio
of the overlapping area, which is achieved by the bilinear interpolation copula function in Eq

(8). In this view, every cell in the partition ~G should be visited and computed, since the algo-
rithm does not know in advance whether the visit will result in a zero cell or not.

The same algorithm can be viewed from the other way around, which we call “distribution
view”. Instead of collecting probability from the overlapping cells, we can visit each non-zero cell

Gi,j and distribute the probability mass ai,j to the overlapping cells in ~G, again in proportion to the
ratio of the overlapping area. Fig 4 shows that a2,2 is distributed to b1,1, b1,2, b2,1, and b2,2, where bi,
j acts as an accumulator of probability mass incoming from each non-zero cell of G. Sparse matrix
representation can be used to store a and b. This algorithm (Algorithm 3) is shown below.

Algorithm 3 (CBJF-Distribution)
Step 0 (Initialize)

Define partition G by computing [ui], [vj]

Define partition ~G by computing ½~ui�; ½~vj�
[bi,j] is an empty zero martix

Step 1 (Distribute [ai,j])
For each non-zero ai,j
For each overlapping cell ~Gs;t

p ¼ areaðGi;j \ ~Gs;tÞ = areaðGi;jÞ
bs,t = bs,t + p � ai,j

Algorithm 3 (CBJF-Distribution) is simpler, faster, and storage-efficient, and hence, it can
be applied to high dimensional case. On top of these benefits, it enables further extensions. Let
us first look into an extension to resampling-based population generation, which is very com-
mon. In case that disaggregated micro-samples are given for the reference joint distribution, let
p(k) = (x(k),y(k),z(k)) denote the k-th survey record in PUMS, which we will call a PUMS entry
(k) hereafter in order to reduce confusion in the use of the term “sample”. x(k) and y(k) are attri-
butes whose target margins are given, while z(k) is a vector of additional attributes. Let P = {p(k);
k = 1.N} denote the PUMS set. Once the target joint distribution b is obtained, it can be directly
used for generating agents with attributes (x,y) drawn from b. However, we cannot set the

Copula-Based Approach to Synthetic Population Generation

PLOS ONE | DOI:10.1371/journal.pone.0159496 August 4, 2016 9 / 28



additional attributes z. This is the motivation of resampling based population generation,
where synthetic population is generated by resampling P. In this case, a selection probability
w(k) is assigned to each PUMS entry p(k), so that resampling selects p(k) with probability w(k).
The goal of simple resampling is to compute w(k) so as to meet the target margin requirement.
Simple resampling can be efficiently combined with IPF procedure. However, in this case, the
zero cell problem still persists, i.e. we cannot generate any population in a zero cell where no
PUMS entry exists. This can be solved by viewing Algorithm 3 (CBJF-Distribution) at the gran-
ularity of PUMS entry. Algorithm 3 (CBJF-Distribution) allocates the probability mass of ai,j to

overlapping grids in ~G. On the same token, we can think a PUMS entry p(k) as a cell having the

Fig 3. Collection view of CBJF (Partition lines are for the example in Table 1).

doi:10.1371/journal.pone.0159496.g003
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probability mass of 1/N. (When there are more than one PUMS entries in a cell, we can con-
sider them as multiple layers overlaid on the same cell, each of which has the probability mass

of 1/N.) For each p(k), we can find the overlapping cells ~Gs;t , and a copy of p
(k) is added to the

cell ~Gs;t with the selection probability determined in proportion to the overlapping area ratio.

Note that (x,y) attribute of p(k) is to be replaced by that of ~Gs;t . In this way, p(k) is duplicated

into multiple copies, whose weights sum to 1/N, and each copy has different values of (x,y)
attribute while retaining the same z(k) attribute. Details are given in Algorithm 4 (CBJF-Resam-
pling). At the end of the algorithm, we get a setQ = {(q(k),w(k)); k = 1.M}, which can be used as
the source of resampling for synthetic population generation.

Fig 4. Distribution view of CBJF.

doi:10.1371/journal.pone.0159496.g004
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Algorithm 4 (CBJF-Resampling)
Step 0 (Initialize)

Define partition G by computing [ui], [vj]

Define partition ~G by computing ½~ui�; ½~vj�
Q = an empty set

Step 1 (Distribute PUMS entry)
For each PUMS entry p(k) = (x(k),y(k),z(k)) 2 P

Find Gi,j (the cell where p(k) belongs)
For each overlapping cell ~Gs;t

w ¼ areaðGi;j \ ~Gs;tÞ = areaðGi;jÞ=N
q = (xs,yt,z

(k))
Add (q,w) to Q

The last extension is about handling continuous variables. For the continuous variable cases, it
is natural to consider the reference joint is given as PUMS set P = {p(k); k = 1.N} as above, while tar-
get margins are given in functional form F~XðxÞ and F~YðyÞ. We also assume that their inverses
F�1~X ðuÞ and F�1~Y ðvÞ are available. In fact, continuous case is much simpler, at least conceptually, due

to the fact that (X,Y) and ðF�1~X ðFXðXÞÞ; F�1~Y ðFYðYÞÞÞ share the same copula [18]. For each PUMS

entry p(k) = (x(k),y(k),z(k)), the corresponding point qðkÞ ¼ ð~x ðkÞ; ~y ðkÞ; zðkÞÞ can be computed as
shown in Fig 5: ~x ðkÞ ¼ F�1~X ðuðkÞÞ and ~y ðkÞ ¼ F�1~Y ðvðkÞÞ, where u(k) = FX(x

(k)) and v(k) = FY(y
(k)). Since

the reference joint distribution is given as the PUMS set P, u(k) = i(k)/N and v(k) = j(k)/N, where i(k)

(or j(k)) is the number of PUMS entries p(l) with x(l)� x(k) (or y(l)� y(k)). Computation of u(k)

(or v(k)) can be done more efficiently by sorting {x(l)} (or {y(l)}). This procedure is described in Algo-
rithm 5 (CBJF-Continuous) below. The overall computational complexity of CBJF-Continuous is
O(N log N), whereN is the size of PUMS set. The new sample setQ = {q(k); k = 1.N} is the source of
resampling for synthetic population generation. In hybrid case where continuous and discrete vari-
ables are mixed, the above extensions can be easily combined and details are left to the readers.

Algorithm 5 (CBJF-Continuous)
Step 0 (Initialize)

Sort {x(l)} and {y(l)}
Q is an empty set

Fig 5. Mapping x(k) to x~ðkÞ.

doi:10.1371/journal.pone.0159496.g005
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Step 1 (Transform PUMS set)
For each PUMS entry p(k) = (x(k),y(k),z(k)) 2 P

Obtain i(k) and j(k) from sorted sets
u(k) = i(k)/N and v(k) = j(k)/N
~x ðkÞ ¼ F�1~X ðuðkÞÞ and ~y ðkÞ ¼ F�1~Y ðvðkÞÞ
Add qðkÞ ¼ ð~x ðkÞ; ~y ðkÞ; zðkÞÞ to Q

Numerical Experiments and Comparison
For comparison purpose, the joint fitting problem was also formulated as the following
weighted least square formulation, which is an instance of a quadratic programming (QP For-
mulation) problem:

QP Formulation
Minimize

X
i;j

wi;jðbi;j � ai;jÞ2

Subject to
bi,+ = ri for i = 1,. . .,m,
b+,j = cj for j = 1,. . .,n,
bi,j� 0,

where wi;j ¼
1

ai;j
if ai;j 6¼ 0

M if ai;j ¼ 0

8><
>:

9>=
>;
;

and M is a sufficiently large number.

Note that the objective function in the QP can be replaced with a weighted L1-norm:

Minimize
X
i;j

wi;jjbi;j � ai;jj

Although the L1-norm is not a linear function, a standard technique can be applied to con-
vert the optimization problem to a linear programming (LP) (see [21], for example), resulting
in the following LP formulation, where the new variable Zþi;j (or Z

�
i;j) represent the positive (or

negative) part of bi,j − ai,j. (The solution of this LP Formulation was also computed for the test
cases listed in this section, however, LP results were discarded because the output quality was
significantly inferior to other outputs. Though, we leave the formulation here for documenta-
tion purpose.)

LP Formulation
Minimize

X
i;j

wi;jðZþi;j þ Z�i;jÞ

Subject to
bi;j � ai;j ¼ Zþi;j � Z�i;j for 8i; j
bi,+ = ri for 8i
b+,j = cj for 8j
bi;j � 0; Zþi;j � 0; Z�i;j � 0 for 8i; j

where wi;j ¼
1

ai;j
if ai;j 6¼ 0

M if ai;j ¼ 0

8><
>:

9>=
>;
;

and M is a sufficiently large number.

Some quantitative measures will be introduced in order to compare the results in terms of
preserving the dependence structure. The most popular measure of dependence is Pearson’s
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product moment correlation coefficient, which is defined as:

rðX;YÞ :¼ CovðX;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞVarðYÞp ð9Þ

Although it is simple and familiar, Pearson’s correlation coefficient measures only the linear
dependence between X and Y. An alternative to Pearson’s correlation is a rank correlation,
such as Spearman’s rho or Kendall’s tau. Spearman’s rho measures the Pearson’s correlation
between the two uniform random variables FX(X) and FY(Y):

sðX;YÞ :¼ rðFXðXÞ; FYðYÞÞ ð10Þ

For Kendall’s tau, consider the two independent samples (X1,Y1) and (X2,Y2) with the same
joint distribution as (X,Y). (X1,Y1) and (X2,Y2) are concordant if (X1−X2)(Y1−Y2)> 0 or discor-
dant if (X1−X2)(Y1−Y2)< 0. Then, Kendall’s tau is defined as follows:

tðX;YÞ :¼ E½signððX1 � X2ÞðY1 � Y2ÞÞ�

¼ P½ðX1 � X2ÞðY1 � Y2Þ > 0� � P½ðX1 � X2ÞðY1 � Y2Þ < 0� ð11Þ

For the general types of dependence, the maximal information coefficient (MIC) [22] is also
used. MIC is a measure of dependence which captures a wide range of (either functional or
non-functional) associations between variables. In case that a functional relationship exists,
MIC provides a score that roughly equals the coefficient of determination (R2) of the data rela-
tive to the regression function. (10,000 sample points were drawn from each joint distribution
and used to calculate their MIC values.)

Fig 6. Reference joint types in the test set. (a) Bivariate normal, (b) Bimodal, (c) Lower tail dependence, (d) U-shape, (e) Circle.

doi:10.1371/journal.pone.0159496.g006
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In order to test the effectiveness of the proposed method, the following five different types
of reference joint distribution types were chosen (shown in Fig 6):

• Normal (Fig 6(A)): bivariate normal with mean μ = (0.0, 0.0), standard deviation σ = 1 and
correlation ρ = 0.7

• Bimodal (Fig 6(B)): mixture of two bivariate Gaussians

- μ1 = (0.0, 0.0), σ1 = 1 and ρ1 = 0.7

- μ2 = (3.0, 1.0), σ2 = 1 and ρ2 = -0.5

• Tail dependent (Fig 6(C)): a joint distribution showing strong tail dependence when X is low

• U-shape (Fig 6(D)): U-shaped distribution whose correlation coefficients are quite small

• Circle (Fig 6(E)): Circular joint distribution.

Then, in order to obtain target margins, the following eight types of marginal modification
operators were applied to the margins of each reference joint distribution (see Fig 7):

• Skew: Left or right skew applied to the column margin and the row margin. There are 4 dif-
ferent combinations of skewed margins (LL, RR, LR, RL). For example, “Skew LR” indicates
that the column margin [cj] is skewed left and the row margin [ri] is skewed right.

Fig 7. Target marginal modification operators. (a) Original marginal distribution, (b) Skew left, (c) Skew right, (d) Uniform, (e) Fat tail, (f) Thin tail, (g)
Perturbation.

doi:10.1371/journal.pone.0159496.g007
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• Uniform: Uniform target margin

• Fat tail: To make the margin tails fatter

• Thin tail: To make the margin tails thinner

• Perturb: Add ±10% noise to each bin of the reference margins

Combining the five reference joint types with the eight marginal modification operators, a
total of 40 combinations were used as the test set. The test set is not meant to be comprehen-
sive, but rather some typical cases were selected in order to examine the effectiveness of the
proposed methods in terms of dependency measures. Each margin was discretized into 100
bins, resulting in 100x100 cells in a joint table. For each combination of reference joint

Fig 8. Output results for normal joint distribution and fat tail target margins.

doi:10.1371/journal.pone.0159496.g008
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distribution and target margins, IPF procedure, QP method, and CBJF approach were applied
in order to obtain the target joint distribution.

Fig 8 shows the output distributions for one out of the 40 test cases: the normal joint + fat
tail operator. Fig 8(D), 8(E), 8(G) and 8(H) are the scatter plots of the 10,000 sample points
(for graphical presentation purpose) from the reference distribution, the IPF result, the QP
result, and the CBJF result, respectively. While copula result seems to have similar dependent
structure of reference joint, IPF and QP results look having more linearly correlated dependent
structure. This is one of many cases where the output from CBJF approach outperforms the
other methods. (The output plots for all 40 cases can be found in S1 Fig. Another numerical
experiment of various changes on marginal distributions can be found in S2 Fig.)

IPF produces the smallest relative entropy (Eq (2)). However, relative entropy does not con-
vey the same information as level of dependence structure preservation which can be measured

Table 4. Pearson correlation coefficients ρ(X,Y).

Ref. Joint Type Pearson ρ(Ref.) Method (a),(b) Target marginal type Sum

Skew LL Skew RR Skew LR Skew RL Uni-form Fat tail Thin tail Perturb

Normal 0.685 IPF (a) 0.714 0.712 0.683 0.660 0.950 0.910 0.370 0.684

(b) 0.030 0.027 0.001 0.025 0.266 0.226 0.314 0.001 0.889

QP (a) 0.581 0.633 0.784 0.844 0.738 0.797 0.290 0.684

(b) 0.104 0.052 0.099 0.159 0.054 0.113 0.395 0.001 0.976

Copula (a) 0.674 0.677 0.655 0.657 0.665 0.679 0.676 0.683

(b) 0.011 0.007 0.030 0.028 0.020 0.005 0.009 0.002 0.111

Bimodal 0.413 IPF (a) 0.739 0.193 0.018 0.535 0.288 0.319 0.365 0.418

(b) 0.326 0.220 0.395 0.122 0.125 0.094 0.047 0.005 1.334

QP (a) 0.652 0.131 0.147 0.744 0.276 0.332 0.379 0.418

(b) 0.239 0.282 0.265 0.331 0.137 0.081 0.034 0.005 1.376

Copula (a) 0.308 0.437 0.379 0.361 0.419 0.407 0.418 0.407

(b) 0.105 0.024 0.034 0.052 0.006 0.006 0.006 0.006 0.238

Tail depen-dent 0.449 IPF (a) -0.450 0.489 -0.615 -0.077 0.088 0.317 0.207 0.447

(b) 0.899 0.041 1.063 0.526 0.361 0.132 0.241 0.002 3.264

QP (a) -0.340 0.599 -0.631 0.214 0.135 0.272 0.164 0.447

(b) 0.789 0.150 1.079 0.234 0.314 0.177 0.284 0.002 3.029

Copula (a) 0.429 0.433 0.471 0.355 0.454 0.452 0.447 0.446

(b) 0.020 0.016 0.022 0.094 0.005 0.003 0.002 0.003 0.164

U-shape -0.001 IPF (a) -0.159 0.107 0.091 -0.114 0.025 0.013 -0.002 0.000

(b) 0.155 0.111 0.095 0.110 0.029 0.017 0.002 0.003 0.522

QP (a) -0.282 0.095 0.192 -0.103 0.021 0.012 -0.001 0.000

(b) 0.279 0.098 0.196 0.100 0.024 0.015 0.003 0.003 0.718

Copula (a) 0.047 -0.038 -0.042 0.041 -0.003 -0.003 -0.004 -0.001

(b) 0.051 0.035 0.039 0.045 0.000 0.000 0.000 0.002 0.172

Saddle 0.681 IPF (a) 0.680 0.682 0.681 0.682 0.680 0.680 0.681 0.678

(b) 0.000 0.002 0.000 0.002 0.000 0.000 0.001 0.003 0.008

QP (a) 0.680 0.683 0.681 0.682 0.680 0.680 0.681 0.678

(b) 0.000 0.002 0.000 0.002 0.000 0.000 0.001 0.002 0.008

Copula (a) 0.680 0.680 0.680 0.680 0.680 0.680 0.680 0.681

(b) 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.002

(a) = Observed Pearson correlation ρ(Observed)

(b) = Absolute deviation |ρ(Reference)—ρ(Observed) |

doi:10.1371/journal.pone.0159496.t004
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from correlation coefficients. For the quantitative comparison of dependence structure preser-
vation, the dependency measures stated in the previous section were computed: Pearson’s cor-
relation, Spearman’s rho, Kendall’s tau, and the MIC. The results are shown in Tables 4–7
(rows marked as (a)), respectively. For each dependency measure, shown in Tables 4–7 (rows
marked as (b)) are the deviation from the measure of the original reference joint table to that of
the output joint table of each method. There, the smaller deviation implies the better preserva-
tion of dependence structure. The comparison results are summarized as follows:

• The perturbation operation (the second last columns of Tables 4–7) does not change the tar-
get margins significantly from those of the reference margins. For this small change, all three
methods work well; showing almost no difference in the dependence measures.

Table 5. Spearman’s rank correlation coefficients s(X,Y).

Ref. Joint Type Spear-man s(Ref.) Method (a),(b) Target marginal type Sum

Skew LL Skew RR Skew LR Skew RL Uni-form Fat tail Thin tail Perturb

Normal 0.667 IPF (a) 0.665 0.684 0.699 0.669 0.950 0.911 0.355 0.668

(b) 0.002 0.016 0.032 0.001 0.283 0.244 0.313 0.001 0.892

QP (a) 0.485 0.578 0.842 0.902 0.738 0.839 0.312 0.668

(b) 0.183 0.089 0.175 0.234 0.071 0.172 0.355 0.001 1.280

Copula (a) 0.663 0.663 0.663 0.663 0.665 0.665 0.658 0.666

(b) 0.004 0.004 0.004 0.004 0.002 0.003 0.009 0.002 0.032

Bimodal 0.430 IPF (a) 0.770 0.154 0.023 0.579 0.288 0.344 0.360 0.440

(b) 0.340 0.276 0.407 0.148 0.142 0.086 0.070 0.010 1.480

QP (a) 0.693 0.115 0.210 0.822 0.276 0.358 0.371 0.440

(b) 0.262 0.315 0.220 0.392 0.154 0.072 0.059 0.010 1.485

Copula (a) 0.433 0.427 0.427 0.433 0.419 0.426 0.426 0.429

(b) 0.003 0.003 0.003 0.003 0.012 0.004 0.004 0.001 0.033

Tail depen-dent 0.452 IPF (a) -0.599 0.568 -0.774 -0.210 0.088 0.387 0.173 0.451

(b) 1.050 0.116 1.226 0.661 0.364 0.065 0.279 0.000 3.761

QP (a) -0.435 0.705 -0.815 0.202 0.135 0.344 0.150 0.451

(b) 0.886 0.254 1.266 0.250 0.317 0.107 0.302 0.000 3.382

Copula (a) 0.448 0.445 0.448 0.445 0.454 0.453 0.435 0.450

(b) 0.004 0.006 0.003 0.007 0.002 0.001 0.016 0.001 0.040

U-shape -0.010 IPF (a) -0.210 0.146 0.123 -0.178 0.025 0.003 -0.007 -0.009

(b) 0.200 0.156 0.134 0.167 0.036 0.013 0.003 0.001 0.710

QP (a) -0.327 0.154 0.219 -0.195 0.021 0.003 -0.006 -0.009

(b) 0.317 0.164 0.230 0.185 0.031 0.013 0.004 0.001 0.945

Copula (a) -0.009 -0.010 -0.010 -0.009 -0.003 -0.006 -0.015 -0.010

(b) 0.001 0.000 0.000 0.001 0.007 0.004 0.005 0.000 0.019

Saddle 0.681 IPF (a) 0.680 0.683 0.681 0.682 0.680 0.680 0.681 0.678

(b) 0.000 0.002 0.000 0.002 0.000 0.000 0.001 0.003 0.009

QP (a) 0.680 0.683 0.681 0.682 0.680 0.680 0.681 0.678

(b) 0.000 0.002 0.000 0.002 0.000 0.000 0.001 0.003 0.009

Copula (a) 0.680 0.680 0.680 0.680 0.680 0.680 0.680 0.680

(b) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002

(a) = Observed Spearman's rank correlation s(Observed)

(b) = Absolute deviation | s(Reference)–s(Observed) |

doi:10.1371/journal.pone.0159496.t005
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• For the larger modifications, the copula based approach was superior to the other methods in
almost all combinations. This indicates that the proposed method preserves the dependence
structure of the reference joint distribution, while the other methods (IPF and QP) often fail
to maintain the dependence structure when the target margins are significantly different
from those of the reference.

Since not only the type of marginal modification operator but also the amount of marginal
change affects the result, skew, fat tail and thin tail operators are applied to each of the refer-
ence joint types with various levels of marginal change. And for each test combination, the
MIC is calculated to see how the marginal change affects the dependence structure. Marginal
changes are controlled by marginal variation which we define as the summation of the total
variation distance of row margins and that of column margins where total variation distance

Table 6. Kendall’s rank correlation coefficients τ(X,Y).

Ref. Joint Type Kendall τ(Ref.) Method (a),(b) Target marginal type Sum

Skew LL Skew RR Skew LR Skew RL Uni-form Fat tail Thin tail Perturb

Normal 0.478 IPF (a) 0.481 0.488 0.500 0.473 0.791 0.736 0.239 0.479

(b) 0.003 0.010 0.021 0.005 0.313 0.258 0.239 0.001 0.851

QP (a) 0.341 0.405 0.723 0.766 0.577 0.661 0.205 0.479

(b) 0.137 0.073 0.244 0.288 0.099 0.183 0.273 0.001 1.300

Copula (a) 0.474 0.475 0.475 0.474 0.477 0.477 0.467 0.477

(b) 0.004 0.003 0.003 0.004 0.001 0.001 0.011 0.001 0.029

Bimodal 0.287 IPF (a) 0.568 0.077 0.017 0.403 0.123 0.205 0.240 0.294

(b) 0.282 0.209 0.270 0.116 0.163 0.081 0.046 0.007 1.175

QP (a) 0.505 0.055 0.117 0.666 0.106 0.203 0.247 0.294

(b) 0.219 0.231 0.170 0.379 0.180 0.083 0.040 0.008 1.310

Copula (a) 0.284 0.286 0.285 0.285 0.286 0.286 0.283 0.286

(b) 0.002 0.001 0.001 0.002 0.000 0.000 0.003 0.001 0.011

Tail depen-dent 0.350 IPF (a) -0.371 0.458 -0.545 -0.055 0.187 0.446 0.123 0.350

(b) 0.721 0.108 0.895 0.405 0.163 0.096 0.227 0.000 2.615

QP (a) -0.264 0.587 -0.603 0.198 0.209 0.426 0.115 0.350

(b) 0.615 0.237 0.953 0.152 0.141 0.076 0.235 0.000 2.409

Copula (a) 0.345 0.344 0.346 0.343 0.349 0.349 0.332 0.349

(b) 0.005 0.007 0.005 0.007 0.001 0.001 0.019 0.001 0.046

U-shape -0.003 IPF (a) -0.145 0.106 0.091 -0.121 0.010 0.001 -0.001 -0.002

(b) 0.142 0.109 0.094 0.118 0.013 0.004 0.002 0.001 0.483

QP (a) -0.232 0.121 0.162 -0.145 0.010 0.002 0.000 -0.002

(b) 0.229 0.124 0.165 0.143 0.012 0.005 0.002 0.001 0.681

Copula (a) -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003

(b) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

Saddle 0.481 IPF (a) 0.491 0.493 0.491 0.492 0.490 0.491 0.492 0.488

(b) 0.000 0.002 0.000 0.001 0.000 0.000 0.001 0.002 0.007

QP (a) 0.491 0.493 0.491 0.492 0.490 0.491 0.492 0.488

(b) 0.000 0.002 0.000 0.002 0.000 0.000 0.001 0.002 0.008

Copula (a) 0.491 0.491 0.491 0.491 0.491 0.491 0.491 0.491

(b) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002

(a) = Observed Kendall's rank correlation τ(Observed)

(b) = Absolute deviation |τ(Reference)—τ(Observed) |

doi:10.1371/journal.pone.0159496.t006
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between distribution P and Q is:

dðP;QÞ ¼ 1

2
kP � Qk1 ¼

1

2

X
x

jPðxÞ � QðxÞj ð12Þ

From the results shown in Figs 9–13, we can see that all the methods perform well in main-
taining the reference’s dependence structure when the marginal variation is very small. How-
ever, as the variation gets bigger, IPF and QP fail to preserve reference joint distribution’s
dependence structure measured by MIC. On the other hand, MIC of the CBJF output remains
almost unchanged as the level of marginal variation increases.

Finally, we applied the proposed method to generating synthetic patient population for sim-
ulating emergency department of a large hospital in Korea. Reference joint samples are
obtained from more than 100K patient visit records during the year of 2013. Since the purpose

Table 7. MIC (Maximal Information Coefficient).

Ref. Joint Type MIC (Ref.) Method (a),(b) Target marginal type Sum

Skew LL Skew RR Skew LR Skew RL Uni-form Fat tail Thin tail Perturb

Normal 0.328 IPF (a) 0.346 0.344 0.344 0.343 0.829 0.669 0.134 0.336

(b) 0.018 0.016 0.016 0.015 0.501 0.341 0.194 0.008 1.109

QP (a) 0.212 0.223 0.692 0.688 0.534 0.590 0.122 0.334

(b) 0.116 0.105 0.364 0.360 0.206 0.262 0.206 0.006 1.625

Copula (a) 0.329 0.329 0.329 0.326 0.326 0.330 0.327 0.330

(b) 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.002 0.012

Bimodal 0.325 IPF (a) 0.395 0.225 0.283 0.369 0.603 0.515 0.189 0.327

(b) 0.070 0.100 0.042 0.044 0.278 0.190 0.136 0.002 0.862

QP (a) 0.694 0.507 0.527 0.686 0.633 0.569 0.193 0.328

(b) 0.369 0.182 0.202 0.361 0.308 0.244 0.132 0.003 1.801

Copula (a) 0.322 0.323 0.321 0.323 0.325 0.322 0.328 0.328

(b) 0.003 0.002 0.004 0.002 0.000 0.003 0.003 0.003 0.020

Tail depen-dent 0.198 IPF (a) 0.345 0.351 0.362 0.396 0.563 0.608 0.075 0.192

(b) 0.147 0.153 0.164 0.198 0.365 0.410 0.123 0.006 1.566

QP (a) 0.275 0.631 0.632 0.361 0.457 0.756 0.086 0.194

(b) 0.077 0.433 0.434 0.163 0.259 0.558 0.112 0.004 2.040

Copula (a) 0.195 0.197 0.197 0.194 0.192 0.195 0.197 0.195

(b) 0.003 0.001 0.001 0.004 0.006 0.003 0.001 0.003 0.022

U-shape 0.259 IPF (a) 0.276 0.293 0.279 0.286 0.601 0.516 0.105 0.253

(b) 0.017 0.034 0.020 0.027 0.342 0.257 0.154 0.006 0.857

QP (a) 0.519 0.632 0.519 0.634 0.484 0.483 0.103 0.252

(b) 0.260 0.373 0.260 0.375 0.225 0.224 0.156 0.007 1.880

Copula (a) 0.260 0.258 0.259 0.259 0.258 0.254 0.255 0.253

(b) 0.001 0.001 0.000 0.000 0.001 0.005 0.004 0.006 0.018

Saddle 0.457 IPF (a) 0.532 0.521 0.540 0.533 0.521 0.468 0.436 0.455

(b) 0.075 0.064 0.083 0.076 0.064 0.011 0.021 0.002 0.396

QP (a) 0.577 0.555 0.566 0.569 0.219 0.509 0.493 0.455

(b) 0.120 0.098 0.109 0.112 0.238 0.052 0.036 0.002 0.767

Copula (a) 0.455 0.456 0.456 0.456 0.458 0.460 0.454 0.453

(b) 0.002 0.001 0.001 0.001 0.001 0.003 0.003 0.004 0.016

(a) = Observed MIC

(b) = Absolute deviation | MIC(Reference)—MIC(Observed)

doi:10.1371/journal.pone.0159496.t007
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of simulation analysis is to evaluate layout, patient admission policy, and staffing of the emer-
gency department, we need to generate synthetic patient population which reflects the fore-
casted change in marginal distribution of patient age and severity of disease. As reported in
[23], South Korea is one of the most rapidly aging society. ESI (Emergency Severity Index) is a
5-level triage system which classifies patients from level 1 (most urgent) to level 5 (least urgent)

Fig 9. Results from the normal joint distribution with skew, fat tail and thin tail operators.

doi:10.1371/journal.pone.0159496.g009
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by both acuity and resource needs [24]. In this simulation study, the hospital wanted to analyze
the capability of its emergency department in various situations, and hence the distribution of
ESI was varied. Fig 14 shows the reference patient population in 2013 and synthetic popula-
tions generated by IPF, QP, and CBJF. In this study, target marginal distribution of age reflects
the forecast in Statistics Korea [23], where the portion of elderly people (60+) is predicted to

Fig 10. Results from the bimodal joint distribution with skew, fat tail and thin tail operators.

doi:10.1371/journal.pone.0159496.g010
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reach 42% in 2025 (from 31% in the reference population of 2013). In order to see the effect of
reducing the patient concentration at ESI level 3, the distribution of ESI is changed from (2%,
11%, 78%, 6%, 3%) to (8%, 12%, 45%, 20%, 15%). As shown in Table 8, CBJF outperforms IPF
and QP in preserving all dependency measures used in this study.

Fig 11. Results from the tail dependent joint distribution with skew, fat tail and thin tail operators.

doi:10.1371/journal.pone.0159496.g011
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Summary and Concluding Remarks
The joint fitting problem turned out to be a natural application area of the copula concept so as
to preserve the dependence structure of the reference distribution. In this paper, a novel
method based on the copula concept, called CBJF, was proposed. Although IPF has long been

Fig 12. Results from the U-shape joint distribution with skew, fat tail and thin tail operators.

doi:10.1371/journal.pone.0159496.g012
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used in a wide range of applications and studied with mathematical rigor, it is not a silver bullet
for joint fitting problems including synthetic population generation. From the numerical tests,
it was found that CBJF is superior to IPF or QP methods in most cases for the dependence
structure preservation. Furthermore, CBJF is computationally efficient since it does not require

Fig 13. Results from the circle joint distribution with skew, fat tail and thin tail operators.

doi:10.1371/journal.pone.0159496.g013
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iterative procedure. Also, its robustness is a significant advantage of CBJF as it does not need to
consider the convergence problem or zero cells.

A disadvantage of CBJF is that it requires caution when X and/or Y are categorical variables,
such as gender or ethnic groups. In such cases, CBJF result is affected by the ordering of the

Fig 14. Synthetic population for ED(emergency department) simulation.

doi:10.1371/journal.pone.0159496.g014

Table 8. Dependency measures for synthetic ED patient populations.

Dependency measure Reference IPF QP Copula

Pearson Observed -0.171 -0.260 -0.291 -0.144

Abs. Dev. 0.089 0.120 0.027

Spearman Observed -0.165 -0.294 -0.314 -0.146

Abs. Dev. 0.129 0.149 0.019

Kendall Observed -0.089 -0.179 -0.203 -0.086

Abs. Dev. 0.090 0.114 0.003

MIC Observed 0.031 0.098 0.209 0.019

Abs. Dev. 0.067 0.178 0.012

doi:10.1371/journal.pone.0159496.t008
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rows (or columns) when there is no definite natural ordering of the attribute values. In its pres-
ent form, CBJF can be applied when the attribute values have a natural ordering, such as age,
annual income, number of vehicles, or location coordinates. Handling categorical variables is a
topic requiring further research. When categorical target variables are mixed with ordinal tar-
get variables, IPF may be applied first to the categorical variables and then CBJF can work on
the remaining ordinal variables.

In many cases of agent-based simulation applications, micro-samples (such as PUMS) from
the reference population may not be available mainly because of cost of survey or privacy
issues. There are recent researches on generating synthetic population without micro-samples
[25–27]. We believe the concept of CBJF can be applied even when micro-samples are not
available, however the details depend of the available information and require further research.
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