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a b s t r a c t

Monte Carlo methods are in widespread use both in academia and industry. We are, in particular,
interested in improving sensitivity estimates obtained from Monte Carlo experiments with respect
to given parameter values, motivated by, but not restricted to, financial applications. Denoising and
interpolation methods, which have been used for a long time in many different areas, are proposed in
a new formwhich is quadratic, easy to implement, and tailored to our objectives. This heuristic approach
is supported by numerical experiments.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Many complex systems do not render themselves to concrete
mathematical analysis or intuitive dynamics, which often make
us resort to simulation methods. Especially for systems with
stochastic elements or in random environments, Monte Carlo
simulation methods have been popular approaches for decades,
finding applications across almost all scientific disciplines. In
particular, with a relatively short history, such methods have been
accepted by financial communities which include academics and
financial practitioners for the purpose of pricing financial products,
among which products with highly complex payoff structures find
Monte Carlo methods most useful. More importantly from the
financial risk management point of view, the main problem is
sensitivities of such products with respect to underlying financial
variables which are stochastic in nature, by which a risk manager
can adjust the risk exposure of a portfolio by entering into
appropriate transactions. However, for complex stochastic models
with uncertainties due to Monte Carlo sampling errors, sensitivity
estimates can often be quite unstable, in the sense that estimates
might fluctuate heavily for close values of underlying variables.
This is even more so when sensitivities of order higher than one
are required. Our motivation to search for a heuristic but effective
numericalmethod for stable sensitivity estimates starts from these
observations.

We note that this question is not just limited to financial
products but also applies to general complex stochastic systems.

∗ Corresponding author.
E-mail addresses:wanmo.kang@kaist.edu (W. Kang), catenoid@kaist.ac.kr

(K.-K. Kim), hyshin@kaist.ac.kr (H. Shin).

0167-6377/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2012.01.006
The particular situation we have in mind is when limited
computational resources are available at hand and thus we have
a budget allocation problem such as how to select computational
grid points for higher-order sensitivities of a certain function of
a system (or an expected payoff) at a fixed value of a continuous
parameter. Of course, there are several well known methods of
estimating sensitivities such as direct gradient estimation, using
a pathwise method, likelihood ratio method, or other variants.
See, for instance, Asmussen and Glynn [3] and Fu [7] for a brief
introduction. However, such methods require certain structural
properties of the underlying stochastic model. For example, those
methods are applicable only when we can interchange the order
of limit and integration (possibly after some manipulations), and
moreover, pathwise derivatives of integrands or density functions
of associated probability measures should be available. We note
that there have been some approaches to extend the applicability
of such methods, for example, see Liu and Hong [14] where the
authors apply the pathwise method to estimate the sensitivities
of financial products with discontinuous payoffs. Nevertheless, the
complexity of stochastic models often hinders us from utilizing
such well established methods, and we are led to consider more
‘‘naive’’ approaches like finite difference schemes with or without
common random numbers.

Our proposed method treats Monte Carlo sampling errors as
noise. And its final product out of noisy data are denoised multiple
function values which we eventually use for the computation of
sensitivity estimates. In spirit, our approach resembles simulation
metamodels because we hope to get information about system
behaviors as parameters change and metamodels approximate
the unknown true function by assuming certain functional
forms and by considering explicit noise terms. See Barton and
Meckesheimer [4] and references therein for more details about
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metamodels. Actually as explained later, it turns out that our
approach is a variant of spline approximations. However, ours
differs from those works in that we do not start from presumed
functional forms, and additionally the proposedmethod is tailored
to compute sensitivities of certain orders. We note that there are
two other streams of papers that this research can be related
to. One is from the computer design community where the
objective is to produce visually satisfactory graphics from noisy
data, e.g., Sapidis and Farin [17], Zhang et al. [20]. The other is
the mathematical interpolation theories for noisy data such as
Hutchinson and de Hoog [10] and Kersey [12]. More is to be
explained as we describe the method below in Section 2. In the
following section, several numerical examples are given for a
demonstration of its performance. Section 4 concludes.

2. Method and formulation

2.1. Set-up

Consider parameterized random variables {Y (θ): θ ∈ Θ ⊂ R}

where Θ is an open domain. Let us denote its expectation by

α(θ) = E[Y (θ)], (1)

which is obtained via Monte Carlo simulation. We are interested
in the derivatives of the expected value at a fixed parameter θ0,
(dk/dθ k)α(θ)


θ=θ0

=: α(k)(θ0). In particular, the first and second
order derivatives, α′(θ0) and α′′(θ0), are the primary target and
our exposition is focused on them. Sometimes direct gradient
estimation approaches are applicable, e.g., in the (s, S) system from
inventory management and the sensitivity of the performance
function with respect to re-order point s, or in the call option
from financial engineering and the sensitivity of the call price
with respect to initial stock price. However, the applicability of
such methods is problem dependent, and hence we consider finite
difference schemes (FDS). General background materials on FDS
can be found in Asmussen and Glynn [3] or Glasserman [8]. In our
consideration of FDS, the use of common random numbers is not
excluded.

Theusual approach of FDSwould be to select twoor three points
for the computation of α′(θ0) or α′′(θ0). But, as often noted in
the practice of hedging risks of financial products, the so called
delta (α′(·)) or gamma (α′′(·)), which are essential ingredients in
risk management, can be quite unreliable due to the simulation
errors. Our first question is then: Is there a way of obtaining more
reliable sensitivity estimates by simulating at more than 2 or 3
points near θ0, which presumably would provide us with more
information about the true functionα(·) butwith less accuracy due
to decreased simulation efforts at each grid point? One possible
solution is to approximate the unknown function α(·) by a certain
functional form as in the metamodeling framework. For example,
one can consider polynomial regressors or splines to interpolate
simulation outputs, but it should be taken into account that they
contain sampling errors. Other examples that applymetamodeling
ideas to random simulation include Ankenman et al. [2] and van
Beers and Kleijnen [18], both of which are based on Kriging.

Now, suppose that we estimate α(θ) by n number of simulation
trials, i.e., α̂n(θ) = n−1 n

i=1 Yi(θ) where {Yi(θ)}ni=1 is the i.i.d.
sample of Y (θ). An additional outcome of Monte Carlo simulation
is the confidence interval based on sample standard deviation

sn(θ) =


(n − 1)−1 n

i=1(Yi(θ) − α̂n(θ))2
1/2

. We denote the
(1 − a)-th percentile confidence interval as follows:

CI(θ) =


α̂n(θ) − za/2

sn(θ)
√
n

, α̂n(θ) + za/2
sn(θ)
√
n


(2)
where za/2 is the (1 − a/2)-quantile of the standard normal dis-
tribution. If we run simulation at multiple points, say θ−m, . . . , θm,
then {CI(θi)}mi=−m is obtained in addition to {α̂n(θi)}

m
i=−m. This leads

us to our second question: Can we utilize this information in some
way? The next two subsections document the solution approach
we take to address the above two questions, including some back-
ground.

2.2. Denoising techniques

In the simulation experiment, α̂n(θ)−α(θ) is an error which is
a random variable that is approximately normally distributed for
large n values. If we treat this term as a noise ϵ so that α̂n(θ) =

α(θ)+ϵ, then one natural idea to smooth out randomnoises ϵ from
observed values is to apply denoising techniques well developed
in the signal/image processing community. The following is one
typical denoising formulation which can be found, for example,
in Chan and Chen [6] and Rudin et al. [16]: for a d-dimensional
function u(·) and a parameter space X ⊂ Rd,

min
u∈C2(X)


X

∥∆u(x)∥2dx

s.t.


X

u(x)dx =


X

u0(x)dx,
X

(u(x) − u0(x))2dx ≤ constant

(3)

where u0(·) is the observed data and ∆u(·) is the Laplacian,
i.e., ∆u(x) =

d
j=1(∂

2/∂x2j )u(x). The objective function allows
various interpretations such as (i) sum of curvature if we regard
it as a thin shell or (ii) the coefficients of high order terms. This
optimization problem seeks a twice differentiable function that
does not deviate from the observation u0(·) too much by the
constraints on its mean and variance. Hence, it is as if the optimal
solutionminimizes the bending energy in the case of (i) orweakens
the higher frequency terms in (ii), i.e., low-pass filtering. In either
case, a noisier shape increases both quantities and we can get
a smoothed shape after solving the optimization problem. One
general guidance regarding denoising is that if we want to have a
denoised functionwith smooth r-th derivatives, thenweminimize
the squared sum of (r + 2)-th derivatives under some reasonable
conservation constraints.

Assume now that there are 2m + 1 parameter values, say
θ−m, . . . , θm, with corresponding noisy observations α̂n(θi) for i =

−m, . . . ,m. With this amount of data rather than α̂n(θ) for all
θ ∈ Θ , variants of the above denoising formulation have been
suggested with higher order derivatives as the objective function
(see Berghaus and Cannon [5], Hutchinson and de Hoog [10], or
Woltring [19]):

min
u∈Ck(Θ)


Θ

|u(k)(θ)|2dθ

s.t.
m

i=−m

(u(θi) − α̂n(θi))
2

≤ B
(4)

where B is a given positive constant or

min
u∈Ck(Θ)


Θ

|u(k)(θ)|2dθ + ρ

m
i=−m

(u(θi) − α̂n(θi))
2 (5)

where ρ > 0 is a Lagrange multiplier. Reinsch [15] states some
conditions under which the existence and the uniqueness of the
solutions to both (4) and (5) are guaranteed and that the solutions,
in fact, are splines of degree 2k − 1. We, however, note that these
formulations control the deviations of u(·) from α̂n(θi) collectively,
themain reason being that the observed information α̂n(θi)’s is not
enough to build a separate bound for each parameter value θi.
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2.3. Near-interpolation with discrete approximation

As we noted earlier, the Monte Carlo runs generate information
on confidence intervals as in (2), i.e. CI(θi) for each parameter
value θi. We start by modifying the denoising formulation (4)
with this additional information {sn(θi)}mi=−m in contrast with the
ordinary FDS that uses the center values {α̂n(θi)}

m
i=−m only. Instead

of controlling u(θi) − α̂n(θi) in an aggregating fashion, we insert
multiple constraints as follows:

min
u∈Ck(Θ)


Θ

|u(k)(θ)|2dθ

s.t. |u(θi) − α̂n(θi)| ≤ δ
sn(θi)
√
n

, i = −m, . . . ,m
(6)

where δ is some positive real number. It is also convenient to use
equally spaced parameter values, say θi = θ0 + i × h for a positive
value h, and to have the domain Θ = [θ−m − 0.5h, θm + 0.5h].
Then, h is the control variable by which we fix grid points and
obtain local information about α(·) near θ0. The parameter δ is
obviously one that determines the level of deviations of u(·) from
α̂(θi) values. For example, if δ = 0, then it is the usual interpolation
problem with given finitely many function values. In this sense,
the above optimization problem is called near-interpolation. The
existence and uniqueness of the solution to (6) together with a
numerical algorithm is shown in Kersey [12,13]. Indeed, its optimal
solution turns out to be a polynomial spline curve of degree 2k−1.
Following the general rule suggested by image denoising literature,
we use k = r+2 for smooth r-th derivatives, and thus the solution
curves become splines of degrees 5 and 7, respectively for the first
and the second derivatives. From now on, we focus on k = 4 case
for an illustration and also because that case is more relevant to
our motivation.

Toward the final formulation, we introduce a discrete approx-
imation to u(4)(θ) in (6), which eases the implementation. This is
simply a higher-order FDS and given by

Θ

|u(4)(θ)|2dθ ≈
1
h4

m−2
i=−m+2


u(θi−2) − 4u(θi−1) + 6u(θi)

− 4u(θi+1) + u(θi+2)
2

.

And denoting u(θi) by ui for notational convenience, we have a
quadratic programming with linear inequality constraints

min
{ui}mi=−m

m−2
i=−m+2


ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

2

s.t. |ui − α̂n(θi)| ≤ δ
sn(θi)
√
n

, i = −m, . . . ,m.

(7)

This is a convex optimization with linear constraints, and thus
attains a unique local minimumwhich is also the global optimum.
The solution, which can be obtained quite easily by applying built-
in functions in software packages such as MATLAB, is a vector of
size 2m+1 rather than aC4(Θ) function. Our sensitivity estimates
are, then, defined by

α′(θ0) = ∇u0 :=
u1 − u−1

2h
,

α′′(θ0) = ∆u0 :=
u1 − 2u0 + u−1

h2
.

(8)

There still remain some technical questions in this approach. With
a fixed computational budget, there is a trade-off between the
numbers m and n, which are the number of grid points and
the number of simulation runs per point. If we increase m, then
we have more information about the true function α(·) at least
locally. However, this actionwidens the confidence intervals due to
smaller n, whichmeans the decreased reliability of each simulation
output. (Later in the numerical experiments, we demonstrate the
performance differences for different m values.) In addition, we
need to determine the parameter values of δ and h. Even though
any practical choice would be a case-by-case basis, we state some
general properties in the next paragraph.

Glynn [9] briefly discusses the asymptotically optimal choice of
h for FDS. This ideal increment is given as

hn = h∗ × n−η, (9)

where h∗ and η have to be determined repeatedly for individual
problems, depending on some higher derivative which is not
known at the time of simulation. Nevertheless, the optimal choice
of h yields the convergence rate of FDS equal to O(n−η) for 0 <
η < 0.5 as n increases. Now, let us consider ∇u0 and ∆u0 above.
We denote the usual first and second derivatives at θ0 from FDS by
∇α0 = (α̂n(θ1) − α̂n(θ−1))/(2h) and ∆α0 = (α̂n(θ1) − 2α̂n(θ0) +

α̂n(θ−1))/h2. Due to the constraints in the optimization problem
(7), we obtain

|∇u0 − ∇α0| ≤ δ
sn(θ1) + sn(θ−1)

2h
√
n

,

|∆u0 − ∆α0| ≤ δ
sn(θ1) + 2sn(θ0) + sn(θ−1)

h2
√
n

.

Therefore, their asymptotic deviations are bounded by O(δh−1

n−0.5) and O(δh−2n−0.5), respectively. If we choose δ dynamically
as δn = constant × hn or δn = constant × h2

n, then we have
the asymptotic deviation rate O(n−0.5). However, this is the upper
bound of any convergence order for FDS as argued in Glynn [9].We
state this observation as follows.

Proposition 1. Suppose that hn is the asymptotically optimal incre-
ment as in (9) with convergence rate of n−η for 0 < η < 0.5. For
fixed m, if we set δn = O(hn) or O(h2

n), respectively, then the denois-
ing estimates (8) have the same convergence rate as FDS.

Different problems would require separate evaluations of
optimal h and δ values, and such an evaluation is found to be quite
a difficult task in practice. We, instead, choose h values that are
intuitively appealing and practically relevant, e.g., 1% changes of
parameter θ . As for δ, we set it equal to one. This choice makes the
outcome u0 of (7) stay in the original confidence interval CI(θ0). In
Section 3.1, we demonstrate the effects of δ and support the use of
δ = 1 in our numerical tests.

Before moving onto the next section, we comment on possible
extensions of the near-interpolation approach to higher dimen-
sional settings. Unfortunately, there is no existence result for the
solution to (6) for functions with several variables. However, the
modified formulation (7) can be easily extended to higher dimen-
sions, and the solution can be found by any convex quadratic op-
timization solver. In this paper, we restrict our exhibition to the
one dimensional case for illustrative purposes. But, in the remark
below, we briefly mention a possible solution approach.

Remark. Suppose that the function of interest is α(θ, φ) and we
want to estimate

∂2

∂θ2
α(θ, φ)|θ=θ0,φ=φ0 ,

∂2

∂φ2
α(θ, φ)|θ=θ0,φ=φ0

at the same time. Let us denote their Monte Carlo estimates with
sample size n by α̂n(θi, φ0) and α̂n(θ0, φj) where i = −l, . . . , l
and j = −m, . . . ,m. Their standard deviations can be similarly
defined. Then, the near-interpolation scheme in this setting takes
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Fig. 1. Graphical illustration of changing θ and φ.

the following form: with ui,0 := u(θi, φ0) and u0,j := u(θ0, φj), we
minimize

A
l−2

i=−l+2


ui−2,0 − 4ui−1,0 + 6ui,0 − 4ui+1,0 + ui+2,0

2

+ B
m−2

j=−m+2


u0,j−2 − 4u0,j−1 + 6u0,j − 4u0,j+1 + u0,j+2

2

for some positive numbers A, B, by changing {ui,0}
l
i=−l and

{u0,j}
m
j=−m under similar linear inequality constraints as in (7).

Constants A and B are relative weights between the smoothness
measures in θ and φ directions. Note that, in this formulation, we
change the value of each variable θ and φ separately, as shown in
Fig. 1. In this figure, the ui,0 and the u0,j are denoted by solid dots.
Different types of formulations are also possible, e.g., tilting both
variables simultaneously (denoted by empty dots in Fig. 1), which
is better suited for cross derivatives. We leave this issue as a topic
to be more fully explored in the future.

Our last comment is that the above formulation (7) can also
be extended to estimation of sensitivities at multiple points
simultaneously. Actually, we consider this problem in Kang
et al. [11] where, however, a different numerical method is
employed to address this issue. Even so, the central theme remains
the same and we refer the interested reader to the paper for more
discussions.

3. Numerical results

While themethods introduced in the previous section are quite
general in terms of applications, our primary focus is on the
risk management of financial derivatives products. As noted in
the literature, e.g., Andersen and Piterbarg [1], this task requires
sensitivity computations of such products which are fed back into
risk management systems to produce profit and loss prediction
and analysis, for instance. However, complex contracts are often
quite difficult to obtain stable sensitivity estimates (the so called
Greeks that include delta/gamma introduced in Section 2.1 above)
and thus they provide us with a natural setting in which the near-
interpolation scheme (NIS) becomes potentially useful.

In this section, we work with a particular financial product that
is called an equity linked security (ELS) and it is quite a popular type
of equity derivative contract that is actively traded in the Korean
financial market. A detailed payoff structure is explained below
to exhibit its features and we note that many financial contracts
indeed contain payoff features with a similar level of complexity.
For the ease of exposition, we restrict ourselves to the estimation
of delta (α′(θ0)) and gamma (α′′(θ0)) values. In (1), θ corresponds
to the price of the underlying asset, Y (θ) stands for the discounted
random payoff, and α(θ) is the value of the ELS.
The payoff function of the ELS depends on the relative value
of the underlying asset with respect to the initial value, i.e., Ŝt =

St/S0, t ∈ [0, T ], St being the stock price at time t . Here, T indicates
the contract maturity and we set it equal to 3 years in numerical
experiments. In addition, the contract has six early redemption
dates ti = iT/6, i = 1, . . . , 6, which mean that the contract ends
at time ti if a certain condition on Ŝ is met at that time. Note that
T is also regarded as an early redemption date because this feature
precedes others. More specifically,

1. if Ŝti > LBi for some i for the first time, then the contract
expires at time ti with payoff 1 + 0.1i to the investor (where
LB = (0.9, 0.9, 0.85, 0.85, 0.8, 0.8) in this example),

2. if there was no early redemption and min0≤t≤T Ŝt > 0.6, the
payoff is 1,

3. the final payoff is ŜT otherwise.

Here min0≤t≤T Ŝt is the minimum of daily closing prices until
maturity.

The computation of Greeks for this product is non-trivial by
any of the existing methods for sensitivity estimation. The most
challenging estimation problem is when we are close to the last
early redemption date other than the maturity T because, first,
its dynamics are similar to that of a digital option when we are
close to T (hence, relatively well understood), and second, demand
for hedging is little when we are far away from T . Therefore, we
consider two cases for the current time t , namely, two weeks and
one month from the fifth early redemption date t5. In terms of
remaining time-to-maturity, they are 6.5 months and 7 months.
We also assume that risk-free interest rate is 0.05 and the volatility
is 40%. As for θ0, we estimate delta and gamma values at St =

90, . . . , 110 while S0 = 125. Moreover, at each θ0, we set h = 1
which is the distance between nearby points.

Remark. This choice of the perturbation parameter h is made
because, first, it is a convenient and intuitive value to be used in
practice, and second, the optimal h stated in (9) is not known until
we find out h∗ and η for the problem at hand. Fig. 5 and the left
panel of Fig. 6 in Appendix plot the relative rootmean square errors
(RRMSEs) of gammavalues for digital optionswhen the FDS is used.
The first two have an optimal h around 8.1 and 2.2, respectively,
while the optimal value of the third is around 1. As illustrated, this
optimal h varies a lot, depending on parameter values. The right
panel of Fig. 6 shows the RRMSEs of the same product as the left
one when the NIS is implemented. By having n = 20, 000 for
each θi, we have the same computational budget for both cases.
In that figure, we observe that the NIS is less sensitive to the h
value, thereby making the method a potentially useful tool when
the optimal h is practically not convenient to find.

Recall that the FDS uses three points {θ−1, θ0, θ1} for the first
two sensitivities and the NIS (also DNS in (10)) needs {θi}

m
i=−m. For

a fair comparison, we allocate a total budget equally among those
points, and then estimate α(θ0), α′(θ0), and α′′(θ0). In the tests
below, the budget is set to be either 3× 105 or 3× 106 simulation
trials. As a measure of performance, after obtaining such estimates
for all of 21 St values, we look at the RRMSE in % denominated
by the average of true values. Since the price of the ELS does not
have any closed formexpression, the estimates from the 107 Monte
Carlo runs are regarded as the true values. Lastly, our computations
are based on the geometric Brownian motion for the model of the
stock price dynamics.

3.1. Selection of δ value for NIS

There is yet one additional parameter δ to be specified for the
implementation of NIS as in (7). From many tests with various
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Fig. 2. RRMSE of price, delta, and gamma values for NIS in δ with 3 × 105 runs.
Table 1
DNS versus NIS (number of simulation runs = 3 × 105).

m Time-to maturity (M) RRMSE: price (%) RRMSE: delta (%) RRMSE: gamma (%)
DNS NIS DNS NIS DNS NIS

3 6.5 0.0587 0.0588 1.4961 1.5577 12.3621 14.3418
7 0.0674 0.0677 1.3358 1.3989 15.3927 19.1838

4 6.5 0.0633 0.0631 1.3808 1.4690 15.3414 11.7054
7 0.0837 0.0841 1.1409 1.2033 14.8832 12.3571

5 6.5 0.0556 0.0541 1.4475 1.4625 16.1546 11.3016
7 0.0662 0.0644 1.3708 1.3874 15.9390 9.9429

6 6.5 0.0700 0.0675 1.7836 1.5437 18.7276 11.5289
7 0.0891 0.0874 1.6232 1.5580 17.3683 9.5770

7 6.5 0.0714 0.0711 1.1042 0.9023 16.4597 11.0838
7 0.1091 0.1057 1.4690 1.3992 18.3096 12.4892

8 6.5 0.0935 0.0937 1.4759 1.2569 19.8245 14.0457
7 0.1358 0.1333 1.9572 1.6432 39.7813 20.2947
m and δ values, we found that δ = 1 is a reasonable choice,
and this means that the price estimates would stay within one
standard error bound from the original estimates even after solving
the optimization problem. For the rest of this paper, we use this
parameter value. In Fig. 2, we summarize the RRMSE plots for
price, delta, and gamma values along eight different δ values
(δ = 0.25, 0.5, . . . , 1.75, 2). Here, time t is twoweeks from t5, and
the total number of Monte Carlo runs that are used for estimates
at θ0 is fixed at 3 × 105.

3.2. Comparison of NIS and DNS

In this subsection, we compare the performance of NIS with
the original denoising scheme (DNS) introduced in Section 2.2. As
we have done for NIS, we can discretize the function u(k)(·) in (4)
and (5). However, in the first case, (4) becomes a quadratically
constrained quadratic program which requires more efforts to
solve than a linearly constrained quadratic program. Thus, in this
subsection, we focus on the second formulation which is quite
easy to solve and thus the workloads of (5) and (7) should be
comparable. The discretized version of this program can bewritten
as

min
{ui}mi=−m

m−2
i=−m+2


ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

2

+ ρ

m
i=−m

(ui − α̂n(θi))
2. (10)
Obviously, we need to specify the parameter ρ in this formulation.
Fig. 3 exhibits the behaviors of estimates as ρ changes from value 0
to 0.5. Here, the time t is again twoweeks before t5 and the budget
is set to be 3×105 simulation runs. However, as seen from graphs,
we cannot pick a single ρ value with which the DNS works well
for all m values at the same time. Hence, rather than fixing ρ, we
calculated the smallest RRMSE from DNS after applying various ρ
values in each cell of Table 1. In the table, we observe that the
RRMSE of DNS and NIS are quite similar in their magnitudes for
price and delta. Except for m = 3, the gamma RRMSEs of NIS are
about 50%–83% of those of DNS.

3.3. Comparison of NIS and FDS

The RRMSE values from FDS are reported in Table 2. Comparing
Tables 1 and 2, we observe that the NIS increases the RRMSE of
price estimates by at most 0.07% of the average of true prices
with respect to the FDS. Note that this difference is very small
when m = 3 where we put 105 runs at each of {θ−1, θ0, θ1}. Such
difference increases as m increases, the reason being that we have
a less number of runs at each point θi. Regarding delta, we see that
the RRMSE of NIS is greater than that of FDS by at most 0.7%.

Despite such increases in errors for price and delta estimates,
the benefit of NIS lies in its reduction of the RRMSE of gamma
estimates. From two tables, it can be seen that the RRMSE is
decreased by 20%–40% of the average of true gamma values. It is
as if the number of Monte Carlo runs is increased by 10 times.
Therefore, if such small changes in prices and deltas are acceptable
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Fig. 3. RRMSE of price, delta, and gamma values for DNS in ρ with 3 × 105 runs.
Table 2
RRMSE of FDS (number of simulation runs = 3 × 105).

Time-to-maturity (M) RRMSE: price (%) RRMSE: delta (%) RRMSE: gamma (%)

6.5 0.0447 1.1265 43.0554
7 0.0504 0.9532 39.7813
Table 3
FDS versus NIS (number of simulation runs = 3 × 106).

m Time-to maturity (M) RRMSE: price (%) RRMSE: delta (%) RRMSE: gamma (%)
FDS NIS FDS NIS FDS NIS Ratio

6

6.5 0.0144 0.0360 0.3206 0.5550 19.5747 4.8630 4.03
7 0.0146 0.0299 0.4004 0.5981 17.5910 5.4502 3.23
6.5 0.0146 0.0328 0.3191 0.5714 24.2696 5.9839 4.06
7 0.0127 0.0303 0.2329 0.3605 14.6968 6.6813 2.2
(which indeed should be the case in practice), then this is a huge
gain compared to the very little workload that the NIS requires. If
we compare the results of FDS and DNS, then we can see that the
RRMSE reduction of gamma from DNS is only 25%–33% effective
compared to the NIS.

We also found that the case of m = 6 yields the best
performance. For this number, we ran the same experiment but
with the number of simulation runs 3 × 106. The results are
reported in Table 3. Clearly, the above observations seem to be still
valid. For a more graphical exposition of NIS, we plot the graphs
of α′′(θ0) for the range of θ0 values that have been considered. In
Fig. 4, the dashed curve is the result of our NIS and the solid one is
from FDS. The level of fluctuation is greatly reduced.

4. Concluding remarks

In this paper, we looked at the problem of finding reliable
sensitivity estimates of the performance function of complex
stochastic systems. Motivating problems are the computations
of the first and the second derivatives of the prices of financial
products with respect to financial variables, which are an essential
part of the risk management procedure. However, the proposed
method should be applicable as long as the problem at hand has
similar issues such as finite resources and unstable Monte Carlo
sensitivity outputs from finite difference schemes. Our key solution
approach is to treat theMonte Carlo sampling errors as noises, then
to apply denoising techniques which have been well developed
in the image processing or interpolation theory literature. The
main differences from existing works are, first, the optimization
problem is a quadratic programming in finite dimension which is
rapidly solvable, and second, the information about the confidence
intervals from original Monte Carlo estimates is utilized. In
our numerical experiments, we used a highly complex financial
product linked to a single stock. For this example, the performance
of this heuristic method is demonstrated and compared to the
finite difference scheme and a well known denoising technique.
We observed that the additional gains in terms of rootmean square
errors are noticeable compared to the negligible computational
efforts to solve the quadratic optimization problem. Even though
our numerical tests are based on the geometric Brownian motion,
the method is model-free and thus should be applicable to models
with more complex dynamics such as stochastic volatility.

Several questions remain to be studied in the future. In the
original near-interpolation problem, the constraints can include
derivative information as well. In Monte Carlo experiments, it is
possible to obtain lower-order derivative information by applying
direct gradient estimation methods. Incorporating this possibility
into our formulation is an ongoing research question. Also, with
a constrained computational budget, we need to have a better
idea about the trade-off between the values of m and n as well
as the determination of other parameters δ and h. Any possible
solution would depend on some detailed information about the
true performance function such as differentiability or shape. Lastly,
the application of this approach or its variants to simulation
optimization, extending the line of works using splines, would be
an interesting research direction as well.
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Fig. 4. Gamma estimates with the number of simulation runs (left) 3 × 105 (right) 3 × 106 .
Fig. 5. RRMSE of digital option gamma when the FDS is used with K = 120, T = 0.3, n = 100K , and (left) σ = 0.3 (right) σ = 0.1.
Fig. 6. RRMSE of digital option gamma with K = 108, T = 0.05, σ = 0.1, and (left) n = 100K with FDS (right) n = 20K with NIS.
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Appendix

See Figs. 5 and 6.
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