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Beta-decomposition for the Volume and Area of the Union of
Three-dimensional Balls and Their Offsets
Deok-Soo Kim,∗[a] Joonghyun Ryu,[b] Hayong Shin,[c] and Youngsong Cho[d]

Given a set of spherical balls, called atoms, in three-dimensional
space, its mass properties such as the volume and the boundary
area of the union of the atoms are important for many disciplines,
particularly for computational chemistry/biology and structural
molecular biology. Despite many previous studies, this seem-
ingly easy problem of computing mass properties has not been
well-solved. If the mass properties of the union of the offset of
the atoms are to be computed as well, the problem gets even
harder. In this article, we propose algorithms that compute the
mass properties of both the union of atoms and their offsets
both correctly and efficiently.The proposed algorithms employ an
approach, called the Beta-decomposition, based on the recent the-
ory of the beta-complex. Given the beta-complex of an atom set,
these algorithms decompose the target mass property into a set
of primitives using the simplexes of the beta-complex. Then, the

molecular mass property is computed by appropriately summing
up the mass property corresponding to each simplex. The time
complexity of the proposed algorithm is O(m) in the worst case
where m is the number of simplexes in the beta-complex that can
be efficiently computed from the Voronoi diagram of the atoms.
It is known in R

3 that m = O(n) on average for biomolecules
and m = O(n2) in the worst case for general spheres where n

is the number of atoms. The theory is first introduced in R
2 and

extended to R
3.The proposed algorithms were implemented into

the software BetaMass and thoroughly tested using molecular
structures available in the Protein Data Bank. BetaMass is freely
available at the Voronoi Diagram Research Center web site. © 2012

Wiley Periodicals, Inc.

DOI: 10.1002/jcc.22956

Introduction

Suppose that we are given a set A = {a1, a2, . . . , an} of spherical
balls ai = (pi , ri) in R

3 with the center pi and radius ri . We call ai

a vdW -atom and ri a vdW -radius where “vdW” denotes the “van
der Waals.” Set A is called a vdW -molecule (or simply molecule)
and its boundary ∂A is called the vdW -boundary. The area of
the vdW-boundary is called the vdW -area. The region of space
contained within the vdW-boundary is called the vdW -region

and the volume of the vdW-region is called the vdW -volume.
To be physicochemically realistic, we assume that a pair of
vdW-atoms may intersect but an atom is not allowed to be
completely contained within another atom.

Suppose that AO = {aO
1 , aO

2 , . . . , aO
n } is a set of enlarged atoms

aO
i

= (pi , rO
i
) where pi is the center and rO

i
= ri + δ, δ > 0, is

the radius. In geometric modeling and computational geometry
community, AO and ∂AO are called the offset model and the offset

surface of A by the offset amount δ, respectively. In computa-
tional chemistry and the related disciplines, the boundary ∂AO

is frequently referred to by the name of Lee-Richrads (accessi-

ble) surface since Lee and Richards introduced it as the (solvent)

accessible surface in 1974.[1] In this context, δ corresponds to the
radius of a spherical probe approximating a solvent molecule.
The most common solvent molecule is water and its probe is
usually assumed as a spherical ball with 1.4 Å radius. In this
article, we call the volume of the region of space contained
within ∂AO the offset-volume and the area of ∂AO the offset-area.
Another common type of surface is the Connolly surface, also
frequently called the solvent-excluded surface. For the complete
definition of these surfaces and their naming in literature, we
recommend readers to refer to Ref. [2].

In this article, we present algorithms for computing two types
of molecular mass properties in a unified framework: the vdW-
properties and the offset properties. The computation of these
mass properties is important for various applications, particularly
for computational chemistry/biology and structural molecular
biology because these values are important parameters for
understanding various biological phenomena and molecular
functions. Hence, fast computation of their correct values is desir-
able. While there have been many studies due to its importance,
mathematically correct and computationally efficient method
with implementation for computing these mass properties is
still hard to find.

Computing mass properties correctly and efficiently is not as
easy as it may seem because some vdW-atoms may intersect.
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Dodd and Theordorou (1991) reported that the accessible sur-
face (i.e., the offset surface) of a relatively small molecule defined
by a 1.4 Å radius probe had over 80,000 instances of distinct
eight-fold intersections (i.e., eight atoms have a common inter-
section) and even had a 17-fold intersection.[3] Correct and
efficient computation of molecular mass properties requires two
issues to be handled:

• The combinatorics issue: the issue of the combinatorial
structure of the intersections among atoms, and

• The decomposition issue: the issue of decomposing the
mass properties into a set of primitives.

In this article, we propose two algorithms that employ
an approach called the Beta-decomposition that correctly
and efficiently compute molecular mass properties. The
Beta-decomposition-vdW algorithm computes the vdW-
volume and the vdW-area and the Beta-decomposition-
offset algorithm computes the offset-volume and the offset-
area, all in O(n) time on average for a set of n vdW-atoms in
R

3. To be more specific, the proposed algorithms compute both
the vdW and the offset mass properties in O(m) time in the
worst case, where m represents the number of simplexes in the
zero beta-complex in R

3. It is known that m = O(n2) in the
worst case for a set of n general spheres and m = O(n) on aver-
age for molecules. We emphasize the following: Provided that
the vdW mass property is computed, the marginal computation
necessary for the offset mass property is tiny.

The idea of the beta-decomposition is very simple as follows.
Assuming that the zero beta-complex of a molecule is avail-
able, the algorithms use the topology of the beta-complex for
handling the “combinatorics issue” and use both the geometry
and topology of the beta-complex for handling the “decompo-
sition issue.” Then, the correct mass property can be obtained
by the appropriate summation of the mass property of the
decomposed primitives.

We first present the Beta-decomposition-vdW algorithm and
then extend it to the Beta-decomposition-offset algorithm.
The correctness and efficiency of the proposed algorithms
and their implementations are verified through an experiment
using molecular structure data available in the Protein Data
Bank (PDB).[4] To verify the correctness of the solutions com-
puted by the proposed algorithms, we implemented the Monte
Carlo simulation in two different approaches: a straightforward
approach to the Monte Carlo simulation (MCS-I) and an efficient
approach to the Monte Carlo simulation (MCS-II). Both MCS-I
and II were tested with sufficiently many random points to ver-
ify the quality of solutions produced by the Beta-decomposition
algorithm. The program implementing the proposed algorithms
is called BetaMass and is also a part of BetaMol, the Windows-
based molecular modeling and BioCAD software based on the
beta-complex theory. The Linux version of BetaMass was also
implemented. Both are freely available from the web site of
Voronoi Diagram Research Center (VDRC).[5] The idea of the
beta-decomposition algorithm can also be easily used for the
weighted alpha-complex as well.

We call the Voronoi diagrams or the power diagram the primal

structure and the Delaunay triangulation, the regular trianglua-
tion, or the quasi-triangulations the dual structure. We note that

the beta-decomposition algorithm differs from other previous
studies falling into the cell-decomposition approach in that the
beta-decomposition algorithm decomposes the vdW-molecule
using the simplexes in the (subset of the) dual structure, not
the cells in the primal structure.

This article is organized as follows: The “Related Works” section
reviews previous, related studies. The “Voronoi Diagram, Quasi-
triangulation, and the Beta-Complex” section presents some
background materials: the Voronoi diagram for an atom set,
the quasi-triangulation, and the beta-complex. The “Area of the
Union of Disks in R

2” section presents the beta-decomposition
algorithm for computing the two-dimensional volume (i.e., the
area) of the union of a set of disks in the plane and provides the
idea of the Beta-decomposition algorithm for three-dimensional
mass properties. The “Volume of the Union of Balls in R

3”
section presents the algorithm for computing the volume of
the union of the three-dimensional atoms. The “Boundary of the
Union of Balls in R

2 and R
3” section presents the algorithm for

computing the boundary area of the union of both two- and
three-dimensional atoms. The “Offset Volume” section presents
the algorithm for computing the volume of offset model of the
three-dimensional molecule. The “Experiments” section presents
the experimental results which verify the correctness and effi-
ciency of the Beta-decomposition algorithm. Then, the article
concludes in the “Conclusion” section.

RelatedWorks

There were many studies for computing the volume and the
boundary area of a set of spherical atoms in R

3, particularly in
computational chemistry and computational molecular biology.
The first generation of studies was nonanalytic: the Monte Carlo
simulation or enumeration of grid points. Shrake and Rupley
(1973) reported an algorithm for computing the offset-volume
by counting the number of sample points of each atom con-
tained within the offset surface of any other atom.[6] They used
92 sample points for each offset sphere. Other studies used dif-
ferent types of grids.[7–12] Connolly (1985) also used a variation
of counting grid points when he first computed the correction
term for cusps in the Connolly volume.[13] The algorithm by
Eisenhaber et al. (1995) was a typical example of using Monte
Carlo simulation.[14] Even today, Monte Carlo simulation is used
for computing the vdW-volume and vdW-area.[15, 16]

However, the computational cost for getting a high quality
solution using the Monte Carlo simulation was prohibitive and
motivated researchers to develop an analytic approach. Approx-
imation was the first effort in this line of study. For example,
Lee and Richards (1971) cut the accessible surface (i.e., the off-
set surface) of a molecule with a number of parallel planes
with a predefined spacing so that the set of arcs was defined
on each plane from the boundary of the model. Then, they
derived an approximation formula for the boundary area within
a slab between the two consecutive planes and added them
up to get the estimation of the boundary area of the molecule.
Obviously, this idea could be used for computing the volume
as well.
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We want to note here that there is no significant difference
between the computation of the mass properties for van der
Waals molecule and one for its offset model from the algorithmic
point of view in that both take a set of spherical balls as input.

Combinatorial structure of the molecule

A general approach for analytically computing the correct vol-

ume of the union of balls requires the two technical issues

(stated in “Introduction” section) to be resolved: the combina-

torics issue and the decomposition issue. The combinatorics

issue has been studied using various types of Voronoi dia-

grams of different distance measures and/or their derivative

structures. The ordinary Voronoi diagram of points where each

point represents an atom center was first used by Bernal and

Finney (1967)[17] and Richards (1974)[1] for studying molecules.

To reflect the size difference among atoms, Gellatly and Finney

(1982) used radical planes between each pair of neighbor atoms

(where the radical plane was identical to the power bisector

between two different-sized atoms in the power diagram[18]).

Observing that there might be difficulties such as engulfing

cells in the power diagram of molecule, Gerstein et al. (1995)

proposed to use a spherical segment as the bisector between

two atoms.[19] Goede et al. (1997) proposed to use the Voronoi

cell of the Voronoi diagram of atoms, frequently called the addi-

tively weighted Voronoi diagram in the computational geometry

community, in the estimation of atomic volume,[20] and Will

(1998) reported an algorithm for computing each Voronoi cell

in the Voronoi diagram of atoms.[21] Eventually, Kim et al. (2005,

2006) successfully designed and implemented the edge-tracing

algorithm for computing the complete Voronoi diagram of

atoms.[22, 23]

Looking at the other side of combinatorics, Edelsbrunner

devised the theory of the alpha-shape and alpha-complex which

nicely represented the proximity among points.[24] To apply

the concept to molecules consisting of atoms with different

radii, Edelsbrunner devised the concept of the weighted alpha-

shape (and weighted alpha-complex) which was based on the

power diagram and the regular triangulation.[25] The weighted

alpha-shape (and the weighted alpha-complex) correctly repre-

sents the intersection information among atoms, but not the

proximity information among non-intersecting atoms in the

Euclidean distance sense. Hence, to use the weighted alpha-

shape correctly for application problems based on the Euclidean

distance metric in molecular biology, it is necessary to transform

each problem into an intersection problem among appropri-

ately inflated or shrunken atoms and its power diagram should

be completely re-computed. The recently developed theory of

the beta-complex overcomes this drawback of the weighted

alpha-complex so that the Voronoi diagram is computed only

once for the entire lifetime of a given atom set and stored

in the quasi-triangulation format for any type of application

problems for biomolecules.[26, 27] The beta-complex not only effi-

ciently solves geometry/topology problems in computational

chemistry/biology but also brings otherwise computationally

infeasible problems into a feasible space.

Decomposition of mass properties

In resolving the decomposition issue, there have been two main
approaches: the cell decomposition approach and the approach
based on the inclusion-exclusion principle.

Cell-decomposition. The cell-decomposition approach decom-
poses the molecular volume into a set of mutually exclusive
regions where the volume of each region can be easily com-
puted. Bernal and Finney (1967) first used the ordinary Voronoi
diagram of points for computing the volume of liquid by sum-
ming up the volume of the Voronoi cell of each atom.[17]

However, this approach had a problem with the boundary atoms
because they might have either an unbounded or a too large
Voronoi cell. Connolly’s algorithm (1985) for the Connolly vol-
ume was also primarily based on the decomposition of the
Connolly volume into the collection of four types of volume
primitives.[13] In fact, Connolly computed the boundary area of
the Connolly surface also by decomposing the boundary into
convex patches, concave pathes, and saddle patches and apply-
ing the Gauss-Bonnet theorem.[28] Perrot et al. modified this
algorithm for computing the area of accessible surface.[29] Oth-
ers studies in[1, 20, 21] also fall into this category of using different
types of Voronoi diagrams.

More significant studies of cell-decomposition mostly com-
pute the intersection of each atom with its power cell because
each atom is associated with a convex polyhedral cell in the
power diagram. Then, the volume of the union of atoms is
obtained by summing up the atomic volume within all power
cells. Hence, the core problem is how to compute the volume of
an atom intersecting with more than one half-space. Avis et al.
(1988) reported a mathematical observation (without reporting
implementation) for this approach.[30] Fraczkiewicz and Braun
(1998) provided a formula for computing the molecular area and
its derivative using the Gauss-Bonnet theorem after dividing a
molecule using power bisectors.[31]

The algorithm reported by Dodd and Theodorou (1991) was
significant.[3] After computing the intersection between each
atom with the corresponding power cell, they further decom-
posed the atomic volume within a power cell into a set of
finite cones, relatively few cones with possibly different shapes.
They implemented and tested their algorithm using several
molecules. Irisa’s algorithm (1996)[32] was also similar to Dodd
and Theodorou in both its concept and significance. McConkey
et al. (2002) reported a similar algorithm but with the consid-
eration of cases where an atom’s center did not belong to the
corresponding power cell was also provided.[33] Cazals’ algorithm
(2009) implemented using the CGAL library[34, 35] also belongs
to this category.[36, 37] To our knowledge, Cazals’ program was
the most reliable and efficient implementation for the union of
balls before the beta-decomposition scheme that is proposed
in this article.

It is interesting and important to observe that all the pre-
vious algorithms of cell-decomposition schemes decomposed
mass properties using the primary structure (i.e., the Voronoi or
power cells). The proposed beta-decomposition algorithm falls
into the cell-decomposition approach but differs from the previ-
ous studies in that the proposed beta-decomposition algorithm
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decomposes the molecular mass property using the simplexes
of the beta-complex that is an immediate consequence of the
dual structure of the Voronoi diagram.

Inclusion-exclusion principle. It is known that the union of a set
of elements can be found using the inclusion-exclusion principle.
However, it is known to be difficult to get a correct solution
in practice when the set is large because of the combinatorial
explosion of terms in the expanded formula. For a set of n

elements, the total number of terms in the inclusion-exclusion
formula is 2n − 1. Dodd and Theodorou pointed out that the
combinatorial explosion problem is a significant challenge in
biomolecules.[3] To properly use this approach, therefore, it is
critical to reduce the number of terms in the expanded formula.

Using the inclusion–exclusion principle for molecular mass
properties started from Kratky (1978) who proved that the inter-
section of n disks of an identical size in R

2 can always be reduced
to the contribution from the intersections among up to three
disks.[38] Based on this observation, Gibson and Scheraga (1987)
reported an algorithm for computing the molecular volume and
area for unequal atomic radii by removing the intersection terms
lying entirely within some atom.[39] Due to the lack of systematic
methodology, however, they had to actually compute all possible
combinations of intersection to test whether each intersection
occurs among a group of atoms. This leads to difficulties both
for deriving the correct formula of various intersection cases
and the expensive computational cost. Their algorithm incorpo-
rated cancelation of the intersection terms up to among five
spheres. They actually implemented the algorithm and tested it
with two tiny molecules: neo-pantane (C5H12 = CH3C(CH3)2CH3

with four methyl groups) and benzene (C6H6). By approximat-
ing each methyl group (CH3) with a spherical ball with a radius
of 2.125 Å and the central C atom with a ball with a radius
of 2.06 Å, they reduced the neo-pantane problem into a five-
spheres problem. In a similar manner, the benzene problem
was transformed into a six-spheres problem (where not all six
spheres necessarily intersected at the same time). In fact, Dodd
and Theodorou reported that the Gibson and Scheraga algo-
rithm failed whenever six- or higher-fold intersections became
significant contributors to the inclusion-exclusion formula.[3] We
also had a similar experience with our implementation of the
Gibson and Scheraga algorithm. Pavani and Ranghino (1982)
reported an algorithm for computing molecular volume con-
sidering the intersections among up to three atoms and the
cancelation of some intersection terms in the inclusion-exclusion
formula.[40] Chkhartishvili (2001) also reported a formula for com-
puting the volume of the intersection of three spheres with
different radii.[41]

Naiman and Wynn (1992) generalized Kratky’s observation to
arbitrary dimensions: they found that the union of d-dimensional
balls could be computed by the inclusion-exclusion formula con-
taining only at most the intersection terms among d +1 balls if
a simplicial complex which conveyed the intersection informa-
tion among all balls was available.[42] They explicitly stated that
the Delaunay triangulation was such a simplicial complex in the
particular case of identically sized balls. They also showed how
to select such a subset of the entire terms using the simplicial

complex. Petitjean (1994) reported an analytic algorithm to com-
pute 3- and 4-fold intersections among atoms and used them in
the inclusion-exclusion formula.[43] He ran the implementation
on 63 small compounds for computing the molecular volume
and area. Edelsbrunner (1995) showed a way to reduce the num-
ber of terms more effectively using the alpha-shape of spherical
balls[44, 45] and reported its implementation in Ref. [46]. However,
we were not able to obtain the software for the benchmark
test.

We emphasize that the inclusion-exclusion principle requires
formulae for all possible cases of intersections among d + 1
atoms in R

d . Even in R
3, it still remains a challenge to verify that

the reported formulae such as those reported in[39, 46] correctly
cover all possible cases of the intersections among the four
atoms. Hence, a simpler and verifiable approach is desirable.

Voronoi Diagram, Quasi-Triangulation,
and the Beta-Complex

A brief review of the geometric/mathematical constructs related
to the Beta-decomposition is in order. A = {a1, a2, . . . , an} is the
set of vdW-atoms ai = (pi , ri) in R

3. In this article, A denotes a
vdW-molecule. The Voronoi diagram VD of A is defined as VD =
{VC(a1), VC(a2), . . . , VC(an)}, where VC(ai) denotes the Voronoi

cell for ai defined as VC(ai) = {x ∈ R
3|d(x, pi) − ri ≤ d(x, pj) −

rj for i �= j} and d(x, y) denotes the Euclidean distance between
x and y. VD is represented by the quadruplet (V V , EV , FV , CV ):
V V = {vV

1 , vV
2 , . . .}, EV = {eV

1 , eV
2 , . . .}, FV = {f V

1 , f V
2 , . . .}, and

CV = {cV
1 , cV

2 , . . . cV
n } are the sets of the Voronoi vertices (V-

vertices), Voronoi edges (V-edges), Voronoi faces (V-faces), and
Voronoi cells (V-cells) in VD, respectively. The computation of
VD takes O(n3) time in the worst case for n general spheres
but it takes O(n) time on average for molecules consisting
of n atoms, both in R

3. For the details of the algorithm, see
Refs. [22] and [23]. One issue to note is when five or more
atoms define a common V-vertex. This case is possible from
theoretical point of view and occurs when the boundaries of
the atoms are equi-distant from the V-vertex. While this situation
may occur in reality and cause a serious computational problem,
such a degeneracy has been recently well-solved by the exact
computation technique proposed by Sugihara’s group.[47] There
is a rich set of literature on the Voronoi diagram of the three-
dimensional sphere set regarding on its definition, algorithms,
and applications.[22, 48–57]

Given the Voronoi diagram, the quasi-triangulation QT of A

is the dual structure of VD. Each V-vertex maps to a tetra-
hedral cell simplex (q-cell); each V-edge maps to a triangular
face simplex (q-face); each V-face maps to an edge simplex
(q-edge); each V-cell maps to a vertex simplex (q-vertex). The
conversion from VD to QT (or vice versa) takes O(m) time
in the worst case where m is the number of the q-simplexes
in the quasi-triangulation (or equivalently, the number of the
topological entities in VD). The conversion does not include any
floating-point arithmetic. A quasi-triangulation is precisely repre-
sented by a quadruplet (V Q, EQ, FQ, CQ): V Q = {v

Q
1 , v

Q
2 , . . . vQ

n },
EQ = {e

Q
1 , e

Q
2 , . . .}, FQ = {f

Q
1 , f

Q
2 , . . .}, and CQ = {c

Q
1 , c

Q
2 , . . .}
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are the sets of the q-vertices, q-edges, q-faces, and q-cells in
QT , respectively. Each simplex in QT is called a q-simplex. The
topology of quasi-triangulation is stored in the (extended) Inter-
world data structure that requires only O(n) memory where n

is the number of atoms in A.[27, 58] Unlike the Delaunay trian-
gulation and the regular triangulation, the quasi-triangulation
is not necessarily a simplicial complex due to anomalies and
small worlds. For details, see Refs. [58], and [59].

Given a quasi-triangulation, the idea of the beta-complex and
beta-shape can be explained as follows (but not computed in
this way). Think of a three-dimensional space filled with soft
matter with some spherical rocks of varying radii scattered
within the matter. Carving out the matter with an omnipresent
spherical cutter, called a probe, whose radius is β , will result
in a shape which is called a beta-hull. Suppose that we have
a beta-hull for a molecule A. We straighten the surface of the
beta-hull so that each spherical triangle on the boundary of the
beta-hull becomes a planar triangle where its vertices are the
centers of the atoms touching the spherical triangle. Then, the
circular arcs of the beta-hull are transformed to edges of line
segment. The straightened object bounded by planar facets is
the beta-shape Sβ of A corresponding to the probe radius β . The
boundary of the beta-shape, denoted by ∂Sβ , is represented by
a triplet (V S , ES , FS), where V S , ES , and FS are the sets of the
β-vertices, β-edges, and β-faces, respectively. A beta-complex Cβ

is a subset of the quasi-triangulation QT where each simplex
in Cβ lies within or on the boundary of the underlying space of
the corresponding beta-shape. This intuitive description about
the beta-complex and beta-shape is similar to that of the alpha-
shape for points in Ref. [24]. Given a molecule A and its quasi-
triangulation, a unique beta-complex (and therefore a unique
beta-shape as well) is defined for a given probe radius β . The
computation of the beta-complex takes O(log m + k) time in
the worst case if binary search is used for querying simplexes in
the quasi-triangulation, where m and k represent the numbers
of simplexes in the quasi-triangulation and the beta-complex,
respectively.[27] A more generalized approach to the simplex
query was recently proposed.[60] It is known that m = O(n2) in
the worst case for a set of n general spheres but m = O(n)

on average for molecules consisting of n atoms in R
3. In this

article, the beta-complex and beta-shape are those defined for
β = 0 unless otherwise stated and they are called the zero beta-

complex and the zero beta-shape, respectively. See Refs. [26, 27,
60] for the formal definitions and algorithms of the beta-shape
and beta-complex.

A beta-complex Cβ is represented by a quadruplet
(V C , EC , FC , CC) where V C , EC , FC , and CC are the sets of the
β-vertices, β-edges, (triangular) β-faces, and (tetrahedral) β-cells,
respectively. We call each simplex in a beta-complex a β-simplex.
For notational convenience, a q-edge (or β-edge) may be repre-
sented by e = (ai , aj), i �= j, where the centers of ai and aj define
e. Similarly, a q-face (or β-face) and a q-cell (or β-cell) can be
represented by f = (ai , aj , ak), i �= j �= k, and c = (ai , aj , ak , al),
i �= j �= k �= l, respectively. The orientations of e, f , and c are
consistently maintained with respect to the orientations of the
corresponding V-entities in VD. Each β-simplex σ ∈ QT takes
one of the four bounding states for a given β value: exterior,

singular, regular, or interior. σ is singular at β if it does not bound
any higher-dimensional β-simplex in Cβ . Hence, it is exposed
to air in its entirety and belongs to ∂Sβ . σ is regular at β if it
bounds a higher-dimensional β-simplex in Cβ . Hence, it is also
exposed to air and also belongs to ∂Sβ . σ is interior at β if
it is the intersection between higher-dimensional β-simplexes.
Otherwise, σ is exterior. Hence, it is not exposed to air and does
not belong to ∂Sβ . Therefore, the set of singular β-simplexes
and regular β-simplexes altogether define the boundary of the
beta-shape. Each q-simplex in QT may or may not become
a member of the beta-complex depending on the given β

value. Each q-simplex is associated with an interval, called the
β-interval, of real value. The collection of the β-intervals corre-
sponding to the bounding states for each q-simplex is called the
β-span. Therefore, the computation of the beta-complex (and/or
the beta-shape) is in fact the search of appropriate q-simplexes
whose β-interval contains the given value of β . This search can
be efficiently done via binary search if the β-spans of all q-
simplexes are sorted. For the details about their definitions and
algorithms, please refer to Refs. [26] and [27].

One important note: The beta-complex is very useful in solv-
ing geometry- and/or shape-related problems in computational
chemistry and computational biology because it has both of
the following dual properties:

• Precise Proximity: The beta-complex has the precise prox-
imity information among all atoms both within and on the
boundary of a molecule where the boundary is defined by a
probe.

• Concise Abstraction: The beta-complex has only the topology
information of the nearest neighbors for each atom in the form
of the connectivity among the β-vertices, β-edges, β-faces, and
β-cells.

Additionally, the beta-complex has the following property:

• Multiresolution: The beta-complex can be defined with
respect to the probe of desired radius.

Hence, the beta-complex can be used to efficiently solve any
type of shape-related problem requiring arbitrary level of pre-
cision if the radius of each atom is additionally available. The
computation of the vdW-volume and vdW-area discussed in
this article is such an example. In addition, the beta-complex
can also be used to efficiently solve any shape-related prob-
lem requiring only the approximation of the shape is sufficient.
An example falling into this category is to find an optimal
superposition of two protein structures. The multiresolution,
also called the level-of-detail, capability facilitates the beta-
complex used for problems requiring different granularity of
approximation. Figure 1 of the Supporting Information shows
an example of an atom set in the plane and its Voronoi diagram,
quasi-triangulation, beta-complex, and beta-shape.

Area of the Union of Disks in R
2

Suppose that A2 = {a1, a2, . . . , an} is a set of planar, circular
atoms ai = (pi , ri) in R

2. We want to compute the area of the
two-dimensional molecular region (i.e. the union of the atoms)
which is a polygon bounded by arcs in R

2. We decompose
the entire molecular region into a number of subregions, called
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Figure 1. The beta-decomposition idea for a two-dimensional molecule. a)
The molecule, b) the zero beta-complex and the m-vertices, and c) the
decomposition of the molecular region via the three types of area primitives.

primitives, whose areas can easily be computed. Then, the area
of the entire molecular region is computed by the summation
of the areas of the primitives. We explore this idea R

2 here and
extend it to R

3 in later sections.
A well-established relationship exists between the simplexes

on the boundary of the beta-shape and the vertices and edges
on the boundary ∂A2 of the molecular region. Suppose that
ai ∩ aj �= ∅ where ai and aj are distinct atoms contributing to
∂A2. Then, ∂ai ∩ ∂aj defines one or two vertices on ∂A2. We
call such a vertex on ∂A2 an m-vertex where “m” denotes the
“model.” The arcs on ∂A2 are called m-edges. A face on the the
molecular boundary can be similarly defined in R

3 and called
an m-face. The following lemma is from Lemma 4 of Ref. [61].

Lemma 1. In R
2, a β-vertex maps to one or more m-edge(s), a

regular β-edge maps to an m-vertex, and a singular β-edge maps to

two m-vertices.

Figure 1a shows a molecule consisting of eight atoms in
the plane. Figure 1b additionally shows its zero beta-complex
and some m-vertices (e.g., v, v ′

1, and v ′
2) denoted by the black

rectangles. Figure 1c shows the molecular region decomposed
into a number of primitives. We define three area primitives as
follows:

• Area of the interior triangle (Tri3): The area of the interior
(triangular) β-face (in blue) of the beta-complex and denoted
by Tri3 because its three vertices are atom centers.

• Area of the apex-exposed triangle (Tri2): The area of the
triangle (in yellow) corresponding to a regular β-edge on the
boundary of the beta-shape and denoted by Tri2 because its
two vertices are atom centers.

• Area of the exposed atomic occupation (Fan1): The area of
the circular atomic region exposed to air (in gray) corresponding
to a β-vertex on the boundary of the beta-shape. We denote
it by Fan1 because it corresponds to a single atom and has a
shape similar to an oriental fan.

Note that each area primitive corresponds to a simplex in
the beta-complex. Then, the area of the entire molecular region
can be correctly computed if the area of each area primitive is
correctly computed and summed up. The combinatorial point
of view is particularly important in this computation.

Area of the interior triangle (Tri3): β-face

Let f = (ai , aj , ak), i �= j �= k, be an interior (triangular) β-face.
The computation of the area of f is trivial if f is an ordinary
triangle. However, one should be careful with interior β-faces
for certain cases.

Figure 2a shows a molecule consisting of five atoms and its
Voronoi diagram and Figure 2b shows the corresponding quasi-
triangulation. The five atoms in the figure do not intersect each

Figure 2. An interior triangle with a negative area. a) the Voronoi diagram of a
molecule and b) the corresponding quasi-triangulation containing a triangular
face simplex with a negative area.
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other. However, consider this example such that the radii of the
atoms are reduced by a constant from the real atoms where one
intersects another. Note that the two Voronoi vertices vl and vr

are defined by the three atoms ai , aj , and ak . Hence, there are two
q-faces, fl and fr , in the quasi-triangulation defined by the centers
of these atoms: fl = (ai , aj , ak) and fr = (ai , ak , aj). Note that the
two q-faces fl and fr share two common q-edges because the
two V-vertices vl and vr are connected by two distinct V-edges.
These two triangles look identical in the Euclidean space because
they have identical sets of three q-vertices and therefore their
areas are identical. On the other hand, the orientations of these
triangles viewed in the Euclidean space are opposite to each
other. To be specific, fl is counterclockwise oriented and fr is
clockwise oriented in the Euclidean space. Hence, one q-face (fl

in this example) has a positive area, while the other (fr in this
example) has a negative area. We need to clarify such a case
because it may arise in real situations. We borrow Lemma 2
from Ref. [27].

Lemma 2. Suppose that three atoms define two (adjacent)

q-faces f ′ and f ′′ in R
2. Then, f ′ has a positive area if, and only if,

f ′′ has a negative area, and vice versa.

We call such a pair of q-faces (i.e., f ′ and f ′′ in Lemma 2)
the twin q-faces and the pair of V-vertices vl and vr above the
twin V -vertices. If twin q-faces are members of the beta-complex,
they are also called the twin β-faces. When there are such twin
β-faces in the zero beta-complex, it turns out that mechanically
adding all signed areas automatically cancels out the positive
and negative triangle pairs. Twin q-faces are adjacent to each
other because they share two q-edges. In addition, it is also
possible that a beta-complex has a single β-face with a negative
area. In such a case, mechanically adding the negative area also
produces a correct solution.

Area of apex-exposed triangle (Tri2): β-edge

Consider e = (ai , aj), i �= j, is a regular β-edge. The β-edge
e in Figure 1b is an example because e bounds a β-face (a
blue triangle). Suppose that the m-vertex v is the intersection
between ∂ai and ∂aj . Then, a triangle � in Figure 1c is defined
by e and v. Note that e is shared by two incident triangles: the
yellow one (�) and the blue one, as shown in Figure 1c. The
yellow triangle is called an apex-exposed triangle because one
of its vertices (i.e., v) is exposed to air.

Consider a singular β-edge e′ = (ai , al) in Figure 1b. In this
case, e′ maps to two m-vertices v ′

1 and v ′
2 (by Lemma 1) which

are the intersections between ∂ai and ∂al . Then, two triangles
�′

1 and �′
2 are defined by v ′

1 and v ′
2 as shown in Figure 1c,

respectively. Hence, both �′
1 and �′

2 are apex-exposed trian-
gles (yellow triangles). This observation therefore proves the
following lemma.

Lemma 3. In R
2, a regular β-edge defines an apex-exposed

triangle and a singular β-edge defines two apex-exposed triangles.

It is obvious to show that the two apex-exposed triangles
corresponding to a singular β-edge are congruent to each other
and share the β-edge.

Area of exposed atomic occupation (Fan1): β-vertex

Suppose that v is a β-vertex and a is the corresponding atom. If
v is singular, a does not intersect any other atom and therefore
all points on the boundary of a are exposed to air. Hence, the
entire atom a contributes to the molecular region. If v is interior,
the entire a is already accounted for in the molecular region
by its incident (interior) β-faces. If v is regular, a is partially
accounted for in the molecular region by some interior β-faces
and some apex-exposed triangles.

Consider an atom aj in Figure 1a where ai ∩ aj ∩ ak �= ∅. The
β-vertex corresponding to aj is regular. Then, the portion of the
atomic area which corresponds to the exposed atom boundary
of aj can be computed by subtracting the already-accounted-
for areas within the atom aj where the already-accounted-for
areas correspond to the incident (blue) interior triangles (Tri3’s)
and the incident (yellow) apex-exposed triangles (Tri2’s). For
example, see the blue triangle (f ) and the two yellow triangles
(� and �′) in Figure 1c which intersect aj . Hence, the exposed
region of aj can be computed by subtracting these triangles
from aj . The remaining atomic region is thus named as an
exposed atomic occupation (Fan1) and may consist of one or
more circular sectors attached to an atom center. In particular,
it consists of more than one sector if and only if the beta-shape
is non-manifold at the β-vertex corresponding to the atom. For
example, aj has one sector and each of ai and al has two
distinct sectors.

Let t be a triangle. Suppose that the center of an atom α

defines a vertex of t. Then, t ∩ α is called the α-wedge of t.
The triangle t may be either an interior β-face or an apex-
exposed triangle. Note that the area of an interior β-face f

already includes the area of the three wedges corresponding
to the vertices of f . Let Fan1v be the exposed atomic occupation
of an atom a which corresponds to a β-vertex v. Let Area(X )
be the area of a shape X . Then,

Area(Fan1v) = Area(a) −
∑

f ∈FC
v

Area(a ∩ f ) −
∑

e∈ES
v

Area(a ∩ �)

(1)

where f ∈ FC
v ⊆ FC is a β-face incident to v, e ∈ ES

v ⊆ EC is a
β-edge incident to v, and � is an apex-exposed triangle defined
by e and the corresponding m-vertex. Recall that EC and FC are
the sets of the β-edges and the β-faces in the beta-complex.

Area of the entire molecular region

Lemma 4. Tri3’s, Tri2’s, and Fan1’s altogether tessellate the entire

molecular region of A2 (See the Supporting Information for the

proof).

Let Tri3f denote that f is an interior β-face and Tri2e is the
apex-exposed triangle(s) corresponding to a β-edge e. Then,
Lemma 4 proves the following theorem.
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Theorem 5. The area of the molecular region of A2 in R
2 is

computed by

Area(A2) =
∑

f ∈FC
Area(Tri3f ) +

∑

e∈ES
Area(Tri2e) +

∑

v∈VS
Area(Fan1v)

(2)

where FC is the β-face set of the zero beta-complex, and V S and ES

are the sets of β-vertices and the β-edges of the corresponding zero

beta-shape, respectively.

Lemma 6. Given the zero beta-complex of a molecule A2 in R
2,

Area(A2) can be computed in O(m) time in the worst case where m

is the number of simplexes in the zero beta-complex of A2 (See the

Supporting Information for the proof).

Because |FC | = |ES | = |V Q| = O(n) in the worst case in R
2

by the equations in the proof of Lemma 4, the following holds.

Corollary 7. Given the zero beta-complex of a molecule A2 in R
2,

Area(A2) can be computed in O(n) time in the worst case where n is

the number of atoms of A2.

Note: One important note on the numerical stability for the
beta-decomposition: There can be two approaches to cancel
out the areas of twin β-faces as follows.

• Include twins: Add up the areas of all β-faces including all
twin β-faces.

• Less twins: Skip all twin β-faces when adding up the areas
of β-faces.

It may at first seem that the “include twins” approach might
be better because the β-faces with the opposite signs will
eventually cancel out anyway. However, we do not recommend
this approach from the numerical stability point of view because
the area computation uses floating-point arithmetic. Let �+

and �− be the positive and negative areas of twin β-faces,
respectively. It turns out that the absolute value of the area of
twin β-faces tends to be small compared to that of the other
triangles. Sometimes, it can be tiny. In other words, |�+| and
|�−| are usually very small when the distribution of disk sizes
is from the distribution of atom sizes in molecules. Let

∑
be

the summation of the areas of all β-faces (including �+) except
�−. Hence,

∑
is usually a very big number compared to |�−|.

Then,
∑ −|�−| can cause a loss of many significant bits in the

computation result from the numerical analysis point of view.
Thus, we recommend to employ the “less twins” approach in
writing codes. The difference of the computational requirement
between the two approaches is insignificant.

Volume of the Union of Balls in R
3

We now extend the idea to R
3. Suppose that a molecule A is

given in R
3. A close relationship exists between the β-simplexes

on the boundary of the zero beta-shape and the m-vertices,
m-edges, and m-faces on the vdW-boundary ∂A. The following
lemma is from Lemma 9 of Ref. [61].

Lemma 8. In R
3, a β-vertex maps to an m-face(s), a β-edge maps

to an m-edge(s), and a β-face maps to an m-vertex(es). A regular

β-face maps to an m-vertex and a singular β-face maps to two

m-vertices.

Lemma 8 states the relationship between the boundary of
the zero beta-shape and the vdW-boundary. Hence, the interior
tetrahedral β-cell is additionally required in order to account
for the interior of the vdW-molecule in the computation of
the vdW-volume. Similar to R

2, the vdW-region in R
3 can be

decomposed into a number of primitives where the volume of
each primitive can be easily computed. We define four types
of volume primitives in R

3 as follows:

• Volume of the interior tetrahedron (Tetra4): The volume of
an interior β-cell in the beta-complex and denoted by Tetra4
because all four of its vertices are atom centers.

• Volume of the apex-exposed tetrahedron (Tetra3): The vol-
ume of a tetrahedron corresponding to a β-face on the
boundary of the beta-shape and denoted by Tetra3 because
its three vertices are atom centers.

• Volume of the edge-exposed go-stone (Gostone2): The vol-
ume of the intersection between two atoms, called a go-stone,
corresponding to a β-edge on the boundary of the beta-shape
and denoted by Gostone2 because it is related with two atoms.

• Volume of the exposed atomic occupation (Fan1): The vol-
ume of the atomic region exposed to air corresponding to a
β-vertex on the boundary of the beta-shape and denoted by
Fan1 because it is related with a single atom. We still call it
“Fan” even though it is a three-dimensional object with its shape
possibly quite different from an oriental fan.

Note that each volume primitive corresponds to a β-simplex
in the zero beta-complex and the vdW-volume can be correctly
computed if the volume of each volume primitive is correctly
computed and summed up.

Figure 3 shows an example illustrating the primitives in R
3.

For presentation convenience, the example in Figure 3a has
only three atoms and its zero beta-complex consists of three
regular β-vertices, three regular β-edges, and one singular β-
face but no β-cell. There are two m-vertices (at the intersection
of the atom boundaries) corresponding to the singular β-face.
Figure 3b shows the two apex-exposed tetrahedra (Tetra3), cor-
responding to the two m-vertices. Figure 3c shows the two
apex-exposed tetrahedra merged together. Figure 3d shows the
go-stone (Gostone2) corresponding to one of the three regular
β-edges. Figure 3e shows both the go-stone and the two apex-
exposed tetrahedra. Figure 3f shows the go-stone subtracted
by the two apex-exposed tetrahedra. Figure 3g shows the three
go-stones together after they are all subtracted by the apex-
exposed tetrahedra. Figure 3h shows one of the atoms and the
apex-exposed tetrahedra. Figure 3i shows the atom subtracted
by the apex-exposed tetrahedra. Figure 3j shows all of these
primitives together.

Interior tetrahedron (Tetra4): β-cell

Let τ = (ai , aj , ak , al) be an interior (tetrahedral) β-cell of the zero
beta-complex where the centers of four atoms ai , aj , ak , and al
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define τ . Let I = (xi , yi , zi , 1)T , J = (xj , yj , zj , 1)T , K = (xk , yk , zk , 1)T ,
and L = (xl , yl , zl , 1)T . (xi , yi , zi) is the center of ai and (xi , yi , zi , 1)T

denotes the transpose of the vector (xi , yi , zi , 1). Then, the signed
volume of τ is given by the determinant

Vol(Tetra4τ ) = 1

6
| I J K L | . (3)

The order of the vertices in the tetrahedron is significant
because exchanging two rows or columns in the determinant
changes the sign of Vol(Tetra4τ ). This implies that the same set
of four vertices may define two distinct tetrahedra of the same
volume but with opposite signs.

According to the beta-complex theory, a (tetrahedral) β-cell
in the beta-complex in R

3 may have either a positive signed
volume or a negative signed volume.[27] If there is a β-cell τ

with a negative volume, there is also another β-cell τ ′ which
occupies exactly the same Euclidean region as τ but with a
positive volume. Hence, an observation similar to Lemma 2 for
R

2 can be made for R
3. The following lemma is from Ref. [27].

Lemma 9. Suppose that four atoms define two (adjacent) q-cells

τ ′ and τ ′′ in R
3. Then, τ ′ has a positive volume if, and only if, τ ′′ has a

negative volume, and vice versa.

In Lemma 9, the two q-cells τ ′ and τ ′′ are called the twin

q-cells and they may share two, three, or sometimes all four
q-faces. When there are twin β-faces in the zero beta-complex,
we can simply add the signed volumes of all the β-cells to
compute the correct vdW-volume. A quasi-triangulation may
have a hierarchy of worlds where there can be one or more small
world(s) underneath the root world.[27, 58, 59] Being the subset of
a quasi-triangulation, the zero beta-complex has a root world
which may or may not contain one or more small world(s).
By definition, the vdW-volume corresponding to the atoms in
small worlds in the quasi-triangulation is a subset of the vdW-
volume corresponding to the atoms of the root world. Hence,
we must ignore the β-simplexes constituting small worlds in
the computation of vdW-volume regardless it has a positive or
negative volume. The following lemma immediately stands.

Lemma 10. Let τ be a β-cell in the zero beta-complex of a mole-

cule A. If τ does not belong to the root world in the beta-complex, τ

does not contribute to the vdW-volume of A.

Therefore, in this article, we assume that all β-cells are in the
root world. In fact, all protein models that we tested have the
root world only in their zero beta-complexes. It turns out that
not only most protein models but also randomly generated
spherical ball sets usually have extremely few twin β-cells.

Apex-exposed tetrahedron (Tetra3): β-face

Consider f = (ai , aj , ak) is a regular β-face. Then, f bounds a
β-cell, say τ . Suppose that the m-vertex v corresponding to f

is the intersection among ∂ai , ∂aj , and ∂ak . Then, a tetrahedron
� is defined by f and v. Note that f is shared by two incident
tetrahedra: � and τ . We call the tetrahedron � an apex-exposed

tetrahedron because one of its vertices is exposed to air.

Consider f ′ = (a′
i
, a′

j
, a′

k
) to be a singular β-face. Then, f ′

bounds no interior β-cell. In this case, f ′ maps to two m-vertices
v ′

1 and v ′
2 at the intersection among ∂a′

i
, ∂a′

j
, and ∂a′

k
. Then, a

tetrahedron �′
1 is defined by f ′ and v ′

1 and another tetrahedron
�′

2 is defined by f ′ and v ′
2. Both are apex-exposed tetrahedra.

This observation is consistent with Lemma 8 and stated as the
following lemma.

Lemma 11. A regular β-face f produces an apex-exposed

tetrahedron and a singular β-face produces two apex-exposed

tetrahedra.

Note that the two apex-exposed tetrahedra corresponding
to a singular β-face are congruent to each other and share
the β-face. Hence, the volume of the apex-exposed tetrahedra
corresponding to a singular β-face can be computed by twice
the volume of either apex-exposed tetrahedron. An interior β-
face (which is not on the boundary of the beta-shape) does
not make any apex-exposed tetrahedron.

Edge-exposed go-stone (Gostone2): β-edge

Consider a β-edge e = (ai , aj) where ai ∩aj �= ∅, i �= j, where e is
on the boundary of the beta-shape. Suppose that e is singular. If
the exposed atomic occupation of both ai and aj independently
contribute to the vdW-volume (without considering the fact ai ∩
aj �= ∅), the volume corresponding to ai ∩ aj is twice accounted
for. Hence, if ai ∩ aj �= ∅, the volume of ai ∩ aj should be
subtracted.

We call ai ∩aj the go-stone Gostone2(ai , aj) because the shape
of ai ∩ aj is similar to the shape of a go-stone with a sharp
circular edge. See Figure 3. The shape of Gostone2(ai , aj) can be
asymmetric around the plane passing through the circular edge.
Let π be the plane, called the radical plane, passing through the
circular edge of a go-stone. Then π cuts both ai and aj to define
two spherical caps and the volume of the Gostone2(ai , aj) can
be computed as the sum of these two caps:

Vol(Gostone2(ai , aj)) = Vol(κi) + Vol(κj) (4)

where κi and κj are the spherical caps of ai and aj cut by
π , respectively. The volume of a spherical cap κ is easily
computed by

Vol(κ) = 1

3
πh2(3r − h) (5)

where h is the height of the spherical cap which is defined on
the sphere with a radius r[62] (See Fig. 4). Note that eq. (5) also
holds for the spherical cap larger than a hemisphere (i.e., when
h > r).

Suppose that e′ is a regular β-edge. Then, not the entire
Gostone2(ai , aj) but its (angular) subset should be subtracted.
This is because one or more angular segment around e′ are not
exposed to air. The go-stones in Figure 3g belong to this case.
See Figure 5. Consider that the black circular dot at the center
of the circle denotes a regular β-edge e = (ai , aj), i �= j, that
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Figure 3. An example of the primitives in R
3. a) Three mutually intersecting

atoms, b) two apex-exposed tetrahedra shown separately, c) the two apex-
exposed tetrahedra together, d) the go-stone corresponding to one of the
regular β-edges, e) both the go-stone and the two apex-exposed tetrahedra,
f ) the go-stone subtracted by the apex-exposed tetrahedra, g) the three go-
stones together after they are all subtracted by the apex-exposed tetrahedra,
h) one of the atoms and the apex-exposed tetrahedra, i) the atom subtracted
by the apex-exposed tetrahedra, and j) all of these primitives together.

is perpendicular to the plane π , the two broken line segments
fl and fr denote the β-faces that are incident to e, the blue
triangle denotes an interior tetrahedron, and the two yellow
triangles denote apex-exposed tetrahedra. The solid circular arc
with angle θ denotes the m-edge between the two m-vertices
vl and vr and is defined as the intersection between the atoms

Figure 4. The volume of a go-stone. a) A go-stone decomposed into two
spherical caps and b) the height of a spherical cap.

Figure 5. The cross-section view of the go-stone volume contributed by a
regular β-edge.

ai and aj . Hence, this is the circular edge lying on the boundary
of the Gostone2(ai , aj) and exposed to air.

Note that Gostone2(ai , aj) is divided into two parts: the not-

exposed-to-air part and the exposed-to-air part. While the not-
exposed-to-air part is already correctly accounted for by Tetra4’s
and Tetra3’s incident to the β-edge e, the exposed-to-air part is
twice accounted for in the vdW-volume. We call the exposed-to-
air part of the go-stone the edge-exposed go-stone. Hence, the
edge-exposed go-stone which corresponds to the solid circular
arc in Figure 5 should be subtracted.

Knowing the volume of the entire Gostone2, the volume of
an edge-exposed circular cones segment requires computing
the exposure angle θ of an m-edge. Let tl be the triangle defined
by the m-vertex vl and the β-edge e. Similarly, another triangle
tr is defined by the m-vertex vr and e. Then, θ is the angle
between the two triangular faces tl and tr .

A regular β-edge can be associated with more than one m-
edge (Lemma 8) if the corresponding beta-shape is nonmanifold
at the β-edge. Hence, in general, an exposure angle for each
m-edge corresponding to a β-edge should be computed and
summed up to compute the correct amount of exposed go-
stone to be subtracted. Therefore, the volume of the edge-
exposed go-stone of a β-edge e is given as

Vol(Gostone2e) = Vol(Gostone2(ai , aj)) × �

2π
. (6)

where � = ∑
k θk where θk is the exposure angle of an m-

edge ek for a β-edge e. An interior β-edge does not make any
edge-exposed go-stone.

Exposed atomic occupation (Fan1): β-vertex

Suppose that v is a β-vertex and a is the corresponding atom.
If v is singular, the entire a contributes to the vdW-region. If v is
interior, the entire a is already accounted for in the vdW-region
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by its incident (interior) β-cells. If v is regular, a is partially
accounted for in the molecular region. Recall its counterpart in
R

2 where we subtracted the appropriate atom wedges from the
area of the entire atomic region. The computation of exposed

atomic occupation (Fan1) in R
3 is similar.

Suppose that an atom a defines one vertex of the β-cell τ .
Then, τ ∩ a is called the a-wedge of τ . Then, the volume of an
a-wedge can be computed as

1

3
r3((α + β + γ ) − π) (7)

where α, β , and γ are the interior angles of the spherical
triangle ∂a ∩ τ and r is the radius of a Ref. [62]. Note that the
volume of an interior tetrahedron includes the volumes of four
wedges of the corresponding β-cell. Then, the volume of Fan1
corresponding to v is defined as

Vol(Fan1v) = Vol(a) −
∑

τ∈CC
v

Vol(a ∩ τ) −
∑

f ∈FS
v

Vol(a ∩ �) (8)

where τ ∈ CC
v ⊆ CC is a β-cell incident to a β-vertex v, f ∈ FS

v ⊆
FS is a β-face incident to v, and � denotes an apex-exposed
tetrahedron defined by f and the corresponding m-vertex. In
eq. (8), a ∩ � also denotes a wedge.

Volume of the entire molecular region

Theorem 12. The vdW-volume Vol(A) is computed by

Vol(A) =
∑

τ∈CC
Vol(Tetra4τ ) +

∑

f ∈FS
Vol(Tetra3f )

−
∑

e∈ES
Vol(Gostone2e) +

∑

v∈VS
Vol(Fan1v) (9)

where CC is the β-cell set in the root world of the zero beta-complex

and FS ,ES ,and V S are the sets of the β-faces,β-edges,and β-vertices

on the boundary of the zero beta-shape, respectively.

Theorem 12 holds because
∑

e∈ES Vol(Gostone2e) is twice
accounted for by

∑
τ∈CC Vol(Tetra4τ ) + ∑

f ∈FS Vol(Tetra3f ) +∑
v∈VS Vol(Fan1v). Equation (9) correctly computes the vdW-

volume regardless of whether the zero beta-shape is manifold
or nonmanifold. The following corollary holds by the similar
proof of Lemma 6.

Corollary 13. Given the zero beta-complex of a molecule A in R
3,

the vdW-volume Vol(A) can be computed in O(m) time in the worst

case where m is the number of simplexes in the root world of the zero

beta-complex of A.

Corollary 14. Given the zero beta-complex of a molecule A in R
3,

the vdW-volume Vol(A) can be computed in O(n) time on average

and O(n2) time in the worst case where n is the number of atoms in A.

Note: Let ξ be the circle such that ξ = ∂ai ∩∂aj . Let π be the
plane containing ξ and δ be the disk defined as δ = π ∩(ai ∩aj).

Let Conei = Cone(ai , δ) be a circular cone with its apex at the
center of ai and the base δ. The formula for the volume of Conei

is known. Conej is similarly defined. Let Cones2 = Conei ∪ Conej .
Then, eq. (9) can be rewritten as

Vol(A) =
∑

τ∈CC
Vol(Tetra4τ ) +

∑

f ∈FS
Vol(Tetra3f )

+
∑

e∈ES
Vol(Cones2e) +

∑

v∈VS
Vol(Fan1′

v). (10)

where Fan1′
v = Fan1v −Cones2e . Equation (10) provides an inter-

pretation of the Beta-decomposition in the additive form with
respect to the β-simplexes. Beta-decomposition-vdW algorithm
in the Supporting Information summarizes the computation of
the vdW-volume using eq. (9).

Boundary of the Union of Balls in R
2 and R

3

We also want to compute the area of the vdW-boundary. Similar
to the vdW-volume, the main idea is to decompose the vdW-
boundary into boundary segments using the zero beta-shape.
Note that the β-simplexes in this section are those of the
boundary of the zero beta-shape, not the beta-complex. We
first present an algorithm in R

2 and extend the idea to R
3.

Length of the vdW-boundary in R
2

Reconsider the planar molecule A2 in Figure 1a where its bound-
ary ∂A2 consists of a set of circular arcs. We want to compute
the total length of ∂A2. The boundary primitive is the circular
arc(s) on ∂A2 exposed to air where its generating circle ∂a cor-
responds to a β-vertex v on the boundary of the beta-shape.
This primitive is called the exposed atomic (occupation) boundary

(EAB).
If v is singular, the entire ∂a is exposed to air. Suppose that

v is regular and another atom a′ exists where a ∩ a′ �= ∅. Then,
the exposed atomic boundary EAB of a is given by

∂a − (∂a ⊂ a′). (11)

Consider aj in Figure 1a where ai ∩ aj ∩ ak �= ∅. The exposed
atomic boundary of aj is obtained by ∂aj − (∂aj ⊂ (ai ∪ ak)).
Note that ∂aj ⊂ (ai ∪ ak) = ∂aj ∩ (τ ∪ �1 ∪ �2) where τ is the
interior triangle (in blue) and �i and �k are the apex-exposed
triangles (in yellow) incident to the center of aj . The exposed
atomic boundary may consist of more than one arc if the beta-
shape is nonmanifold at v. For example, see, in Figure 1b that
the exposed atomic boundary of ai consists of two distinct arcs.
Let Length(X) be the length of the curve segment X .

Lemma 15. Let a be an atom in A2 corresponding to the β-vertex

v on the boundary of the beta-shape.Then, the length of the exposed

atomic occupation boundary EAB of a is given by

Length(EABa) = Length(∂a) − �
f ∈FC

v
Length(∂a ∩ f )

− �
e∈ES

v
Length(∂a ∩ f ′) (12)

where FC
v , ES

v , f , and f ′ are those defined in eq. (1).
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Corollary 16. The total length of ∂A2 can be computed by adding

Length(EAB) for the atoms corresponding to all β-vertices on the

boundary of the zero beta-shape in O(m) time in the worst case

where m represents the number of β-simplexes in the zero beta-

complex of A2.

Area of the vdW-boundary in R
3

We now extend the idea in R
2 to R

3. Recall that a β-vertex
maps to a m-face(s) on ∂A in R

3. Let area(X) be the area of X if
X is a surface segment and the area of ∂X if X is a volumetric
object. We have two types of area primitives corresponding to
the β-vertices and β-edges on the boundary of the beta-shape
as follows:

• Area of the exposed atomic (occupation) boundary (EAB):
The area of ∂a ⊂ ∂A corresponding to a β-vertex.

• Area of the (edge-)exposed go-stone boundary (EGB): The
area of ∂a ⊂ ∂A corresponding to a β-edge.

Suppose that a is an atom corresponding to a β-vertex v. If
v is singular, a does not intersect any other atom and therefore
the entire atom boundary is exposed to air. If v is regular, there
exists another atom intersecting a. The area of EAB of a is
obtained by subtracting the boundary intersection of a with
the other atom from ∂a. Hence, formulae similar to eq. (11) and
(12) hold.

Lemma 17. Suppose that v is a regular β-vertex on the boundary

of the zero beta-shape and corresponds to an atom a. Then, the area

of EAB corresponding to the β-vertex v is defined as

Area(EABa) = Area(∂a) − �
τ∈CC

v
Area(∂a ∩ τ)

− �
f ∈FS

v
Area(∂a ∩ �) (13)

where CC
v , FS

v , and � are those defined in eq. (8).

Note that ∂a ∩ τ is a spherical triangle and Area(∂a ∩ τ) is
given by

r2((α + β + γ ) − π) (14)

where α, β , and γ are the interior angles of the spherical triangle
and r is the radius of an atom.[62] The same formula applies to
∂a ∩ �.

Consider a β-edge e = (ai , aj), i �= j, where ai ∩ aj �= ∅.
Then, Gostone2(ai , aj) should be appropriately accounted for.
Suppose that e is singular. Then, Area(Gostone2(ai , aj)) should
be subtracted once because it is counted twice via EAB for both
ai and aj . Note that

Area(Gostone2(ai , aj)) = 2π(ri hi + rj hj) (15)

where ri is the radius of ai and hi is the height of the cap on
ai .[62] If e is regular, the amount of subtraction is not the entire
Area(Gostone2(ai , aj)) but a subset of Area(Gostone2(ai , aj))

denoted by the (edge-)exposed go-stone boundary (EGB) for the

same reason discussed in “Edge-Exposed Go-Stone (Gostone2):
β-Edge” section. Hence, the area is given by

Area(EGBe) = Area(Gostone2(ai , aj)) × �

2π
(16)

where � is given in eq. (6). Hence, the following theorem stands.

Theorem 18. The vdW-area Area(∂A) can be computed by

Area(∂A) =
∑

v∈VS
Area(EABv) −

∑

e∈ES
Area(EGBe) (17)

where V S and ES are the sets of the β-vertices and β-edges on the

boundary of the zero beta-shape.

Note that EAB and EGB have an one-to-one correspondence
to EAO and EEG in “Volume of the Union of Balls in R

3” section,
respectively.

Corollary 19. Given the beta-complex of a molecule A in R
3, the

vdW-area Area(A) can be computed in O(m) time in the worst case

where m represents the number of β-simplexes in the zero beta-

complex of A.

Offset Volume

Recall that AO = {aO
1 , aO

2 , . . . , aO
n } denotes a set of offset atoms

aO
i

= (pi , rO
i
) from ai = (pi , ri) ∈ A, where rO

i
= ri + δ, δ > 0. In

this section, we present algorithms for computing Vol(AO) and
Area(AO) based on the discussions above. Let VDO and QT O

be the Voronoi diagrams and the quasi-triangulation of AO ,
respectively, and CO

β and SO
β be the zero beta-complex and the

zero beta-shape of AO corresponding to β = 0, respectively. In
this section, we will discuss only the computation of the offset-
volume because the offset-area can be similarly computed. There
can be three approaches for computing offset-volume.

Algorithm 1: Naive approach

The first, a naive approach would be to blindly use Beta-
decomposition-vdW algorithm for computing Vol(AO) after
explicitly replacing the atom set A by the offset atom set AO .
In this approach, we first create an explicit offset model AO

for A and δ. Then, we compute the Voronoi diagram VDO and
the quasi-triangulation QT O for AO . Then, we compute the zero
beta-complex CO

β and the zero beta-shape SO
β for AO . Lastly, we

compute Vol(AO) and Area(AO) using the Beta-decomposition-
vdW algorithm with CO

β and SO
β . While this approach computes

the correct volume of AO , it requires the computation of VDO ,
QT O , and CO

β . The computational requirement of this approach
is as much as the one of Beta-decomposition-vdW. We call this
naive algorithm the Beta-decomposition-offset-1 algorithm and
denote its computational requirement by T1.
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Algorithm 2: Translation of β-intervals

Suppose that x is a V-entity (such as the V-vertex, V-edge, V-face,
or V-cell) in the Voronoi diagram VD for a set A. This implies that
the distances of x from the boundaries of the atoms related to
the definition of x are identical. Then, the addition of a constant
offset amount δ to the radii of these atoms still keep the same
property. Note that δ can be either positive or negative. This
proves the following lemma.

Lemma 20. VD ≡ VDO and QT ≡ QT O.

Lemma 20 can be used to improve the naive algorithm. Note
that, even if QT and QT O are identical, the corresponding
β-intervals of a q-simplex σ ∈ QT and its corresponding q-
simplex σ ′ ∈ QT O are not identical. Figure 6a shows a set of
four two-dimensional atoms A = {a1, a2, a3, a4} and its quasi-
triangulation QT . Figure 6b shows AO for some δ > 0 and the
corresponding quasi-triangulation QT O . See Figure 6a. Consider
the β-edge e and its β-intervals. Suppose that β1 is the radius
of the minimum empty ball tangent to a1 and a3, β2 is the
radius of the minimum empty ball tangent to a1, a3, and a4,
and β3 is the radius of the minimum empty ball tangent to a1,
a2, and a3. Suppose that β1 < β2 < β3. Then, the β-interval for
e to be singular is β1 ≤ β < β2 because e is defined by itself
without bounding any triangular face simplex yet when β is
contained in this interval; the β-interval for e to be regular is
β2 ≤ β < β3 because the β-face fl = (a1, a3, a4) is now defined

Figure 6. The quasi-triangulations for an atom set A and its offset AO (β ′
1 <

β ′
2 < β ′

3 < β1 < β2 < β3). a) A = {a1, a2, a3, a4} and b) AO = {aO
1 , aO

2 , aO
3 , aO

4 }.

and e is an edge of fl when β is contained in this interval; the
β-interval for e to be interior is β3 ≤ β < ∞ because another
β-face fr = (a1, a2, a3) is also now defined and e is shared by
both fl and fr when β is contained in this interval.

See Figure 6b which shows AO and its quasi-triangulation
QT O (which is identical to QT ). We want to investigate the
β-intervals of the same β-edge e in QT O . Suppose that β ′

1 is
the radius of the minimum empty ball tangent to aO

1 and aO
3 ,

β ′
2 is the radius of the minimum empty ball tangent to aO

1 ,
aO

3 , and aO
4 , and β ′

3 is the radius of the minimum empty ball
tangent to aO

1 , aO
2 , and aO

3 . By the similar investigation as earlier,
the β-intervals of e are given as follows: The β-interval for the
singular state is β ′

1 ≤ β < β ′
2; the β-interval for the regular

state is β ′
2 ≤ β < β ′

3; the β-interval for the interior state is
β ′

3 ≤ β < ∞. Note that β ′
1 < β ′

2 < β ′
3.

We make the following observations:

• The number of the β-intervals constituting the β-spans of
each simplex σ in QT O is preserved as σ in QT .

• The β-intervals for the simplex σ in QT and σ in QT O

are different.

Theorem 21. Let I = [β ′, β ′′) be the β-interval of a state of a

simplex σ ∈ QT . Then, for an offset amount δ, the β-interval for the

same state of the same simplex σ ∈ QT O is given by

IO = [β ′ − δ, β ′′ − δ). (18)

See the Supporting Information for the proof. We call this
operation in eq. (18) the translation of β-intervals. Because a
single visit to each simplex in QT is sufficient to modify the
β-intervals for AO , the following corollary holds.

Corollary 22. The β-spans of all q-simplexes in QT O can be com-

puted from QT in O(m) time in the worst case where m is the number

of simplexes in QT .

Note that if the simplexes in QT is ordered in some cri-
terion of the β-interval values, the same order is identically
preserved for the simplexes in QT O . Once QT O is available
with translated β-intervals, the zero beta-complex for AO can
be computed by simply searching the simplexes in QT O whose
singular, regular, and interior β-intervals contain β = 0 value.
The algorithm Beta-decomposition-offset-2 in the Support-
ing Information computes the offset-volume using the zero
beta-complex CO

β of the offset model AO .

Lemma 23. Beta-decomposition-offset-2 algorithm takes T2 =
O(m + log m + k) time in the worst case, where m and k are the

numbers of simplexes in the quasi-triangulation and the zero beta-

complex, respectively.

This lemma holds as follows. The translation of the β-interval
for all simplexes takes O(m) time in the worst case. Then,
O(log m + k) time is necessary in the worst case if the binary
search is used for searching the simplexes of the beta-complex
from the quasi-triangulation, as reported in Ref. [27]. There-
fore, the Beta-decomposition-offset-2 algorithm can compute

1264 Journal of Computational Chemistry 2012, 33, 1252–1273 http://WWW.CHEMISTRYVIEWS.COM



http://WWW.C-CHEM.ORG FULLPAPER

the offset-volume more efficiently than Beta-decomposition-
offset-1 algorithm if QT is available. Note that, in Lemma 23,
k � m.

Algorithm 3: Direct search of β-simplexes

Given QT , it is possible to compute the zero beta-complex CO
β

for AO directly from QT without translating all β-intervals of
all simplexes in QT . Thus, the computation time can be further
reduced. Recall that Cβ and CO

β are the zero beta-complexes for A

and AO , respectively. Careful interpretation of Theorem 21 reveals
the relationship between the β-values and the β-intervals for
Cβ and CO

β stated as follows:

Theorem 24. Let δ > 0 be the offset amount. Suppose that Cβ∗
and CO

β∗ are the beta-complexes for A and AO both corresponding to

the β-value of β∗, respectively.Then,CO
β∗ ≡ Cβ∗+δ .

This theorem holds because eq. (18) states that a simplex
σ ∈ QT O belongs to the beta-complex CO

β if β ′−δ ≤ β∗ < β ′′−δ.
Hence, a simplex σ ∈ QT belongs to CO

β if and only if
σ has the following interval β ′ ≤ β∗ + δ < β ′′. Theorem
24 states that CO

β corresponding to β∗ can be directly com-
puted from QT by computing Cβ corresponding to β∗ + δ.
The algorithm Beta-decomposition-offset-3 in the Supporting
Information computes CO

β .

Lemma 25. Beta-decomposition-offset-3 algorithm takes T3 =
O(log m + kO) time in the worst case, where m and kO are the

numbers of simplexes in the quasi-triangulation and in the zero beta-

complex for AO, respectively.

Note that k < kO � m for most biomolecular applications, in
particular for δ = 1.4 Å which corresponds to water molecule.
In theory, k ≤ kO ≤ m. It is obvious that the time complexity
of the three algorithms have the following relation:

T3 < T2 < T1. (19)

The difference between T3 and T2 is the linear term and may
not be very significant. This fact is verified from the experiment
which will be shown in the next section. The difference between
T2 and T1 is somewhat significant.

Experiments

The proposed algorithms were implemented using C++ based
on the beta-complex library developed by the Voronoi Diagram
Research Center (VDRC)[5] and thoroughly tested using 100 pro-
tein models chosen from the Protein Data Bank (PDB)[4, 63, 64]

(Table A1). The experiment was performed by the Linux ver-
sion of BetaMass on a cluster computer consisting of 118
nodes at VDRC: Each node has an AMD Opteron dual core
2.2 GHz with 2 GB RAM and dual CPU’s for each node. The test
data set was carefully chosen so that the model sizes (i.e., the
number of atoms) were well distributed. The hydrogen atoms

Figure 7. Computation time of the beta-decomposition algorithm for 100
models in PDB: The broken (upper-most) curve for both the vdW-volume and
the vdW-area; the solid (middle) curve for the vdW-volume only; the dotted
(bottom) curve for the marginal computation to get the vdW-area after the
vdW-volume is computed (the right vertical axis).

corresponding to the HOH atom field in the PDB file were
ignored.

Figure 7 shows the computation time (in the unit of msed)
for the vdW-volume and vdW-area of the 100 test models. The
horizontal axis denotes the model size and the vertical axis
denotes the computation time in the unit msec. The upper-
most, broken curve shows the time for computing both the
vdW-volume and the vdW-area, and the middle, solid curve
shows the time required to compute the vdW-volume only.
For these two curves, the left vertical axis applies. The bottom,
dotted curve shows the marginal time required to compute
the vdW-area after the vdW-volume is computed and the right
vertical axis applies. In other words, the dotted curve is the
difference between the upper-most and the middle curves. We
observe the following:

1. The curves are strongly linear as theoretically proved.
2. The largest tested model (1rf8 with 5071 atoms) takes about

1 sec to compute both the vdW-volume and the vdW-area. The
marginal time for the vdW-area of this model is about 0.08 sec.

3. The marginal computation required to compute the vdW-
area in addition to the vdW-volume is tiny. This is because an
additional tiny computation is sufficient for obtaining the vdW-
area once the topology traversal among the simplexes of the
beta-complex is performed for the vdW-volume.

Note that the quasi-triangulation is assumed to be available
via preprocessing. In fact, we store the quasi-triangulation of
all protein models available in PDB in the quasi-triangulation
data base (QTDB) publicly available at VDRC.[5] Figure 7 does
not include the computation time for the Voronoi diagram and
the quasi-triangulation.

The vdW-volumes and vdW-areas computed by the Beta-
decomposition algorithm are given in Table A1. See Column A
for the vdW-volume and Column B for the vdW-area. To verify the
correctness of the proposed algorithm (and its implementation)
for computing the vdW mass properties, we also computed
the vdW-volumes of the 100 test models using Monte Carlo
simulation (See Column G), called the MCS-I. The purpose of
MCS-I is to verify the quality of the solution obtained by the
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Beta-decomposition algorithm, not to make an assessment for
the efficiency of the algorithm. Hence, we implemented MCS-I
in the most obvious way.

In the MCS-I, we first computed the bounding box B of each
model and its volume Vol(B). Then, we created a random point q

within the box and tested whether q is contained in the union
of atoms or not. The containment test is done by checking
whether q is contained by any atom of the model. Suppose
that mS points, out of m tested points, are contained in the
union of atoms. Then, the vdW-volume VolMCS−I estimated by
the Monte Carlo simulation is defined as VolMCS−I = mS

m
VolB .

Figure 8. The absolute differences of the vdW-volumes between the beta-
decomposition algorithm and the Monte Carlo simulation (MCS-I) with 108,
109, and 1010 sample points.

Let Volβdecom be the volume of each model computed by
the beta-decomposition algorithm. Figure 8 shows |Volβdecom −
VolMCS−I| in three curves. The horizontal axis denotes different
test models (sequentially ordered in their sizes) and the vertical
axis denotes the volume difference. Each data point in Figure 8
corresponds to |Volβdecom−VolMCS−I| of each model. Hence, Figure
8 shows the distribution of absolute differences of the Beta-
decomposition from the MCS-I. The top-most curve corresponds
to 108 random points for each model in the MCS-I. The middle
and the lowest curves correspond to 109 and 1010 random
points, respectively. Note that, in a given curve, the absolute
difference increases as the molecule size increases and decreases
as the number of sample points increases. Column G of Table A1
contains the volumes computed by the MCS-I with 1010 random
points for each model. Column H shows the signed absolute
difference Volβdecom − VolMCS−I and Column I shows the signed

relative difference
Volβdecom−VolMCS−I

VolMCS−I
× 100 in percentile.

Figure 9 shows the relative difference
Volβdecom−VolMCS−I

VolMCS−I
× 100

for the simulation corresponding to 1010 sample points. Note
that the relative difference was mostly less than 0.01% and
very stable. These graphs strongly indicates that the proposed

Figure 9. Signed relative difference of the vdW-volumes between the beta-
decomposition algorithm and the Monte Carlo simulation (MCS-I) with 1010

sample points.

algorithm and its implementation computes the correct volume
of the union of atoms in R

3.
The validation of the code implementing MCS-I is also of

importance. The “Experiments” section of the Supporting Infor-
mation describes the convergence of MCS-I code for three
molecules and a test model consisting of 100 nonintersecting
random balls (Figs. 2 and 3 in the Supporting Information).

To understand the characteristics of the proposed algorithm,
we studied the number of volume primitives and the area
primitives involved in the computation for the 100 test data
models. The area primitives and some volume primitives have
identical topological traversals: Both Area(Fan1) and Vol(Fan1)

are defined for each β-vertex and it is necessary to access
its incident β-cells and its incident apex-exposed tetrahedra;
Area(Gostone2) and Vol(Gostone2) are defined for each β-edge
and it is necessary to compute the angle of the m-edge around
the β-edge by accessing the appropriate β-faces incident to
the β-edge. The only difference between Area() and Vol() is
the formulae to evaluate the functions. Therefore, given the
vdW-volume, the vdW-area can be obtained with an additional
tiny computation of applying the area formulae.

Figure 10 shows the number of the volume primitives used for
the 100 test models. From the bottom, each curve denotes the
number of primitives Tetra4, Fan1, Tetra3, and Gostone2, respec-
tively. The top-most curve (of triangles) denotes the number

Figure 10. The number of the primitives processed for computing vdW-
volume and vdW-area for the 100 test models.
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of the total volume primitives: Tetra4 + Tetra3 + Gostone2 +
Fan1. From the figure, it is clear that the number of primitives
involved in the computation is strongly linear to the molecule
size. We also note the following: On average, 6.94 volume prim-
itives per atom are used in the vdW-volume computation and
4.13 area primitives per atom are used in the computation of
the vdW-area.

Figure 11. Computation times used for the primitives in computing the vdW-
volumes for the 100 test models.

Figure 11 shows the computation time for the volume prim-
itives. We do not include the computation time for the area
primitives in this graph because we want to relate Figure 11
to 10. From the bottom, each curve denotes Tetra4, Tetra3,
Gostone2, and Fan1. The top-most curve denotes the total com-
putation time for the entire vdW-volume of a model: Tetra4 +
Tetra3 + Gostone2 + Fan1. We measured the computation time
instead of counting the number of pointer accesses in the topol-
ogy structure to avoid unnecessary technical complications. As
expected, all curves are strongly linear. The curves of Tetra3 and
Tetra4 are very low and similar because each of these primitives
has only one pointer access and a simple formula is applied. The
phenomenon where the Fan1 curve is located high in the graph
deserves an explanation. Each primitive for Fan1 and Gostone2
requires further topology traversal in the neighborhood after
the initial traversal is performed. To be specific, a Fan1 primitive
first accesses all β-cells incident to the β-vertex correspond-
ing to the atom, and then all β-faces should also be accessed
because they define Tetra3’s. On the other hand, the Gostone2
primitive first accesses all β-faces incident to the β-edge and
then computes the sweeping angle. Hence, Gostone2 is simpler
than Fan1. This is why the Fan1 curve is placed high in the
graph.

The experiment for the offset is in order. Figure 12 shows
the time taken for computing the offset-volume of the largest
atom (1rf8, 5071 atoms) for 25 different values of the offset
amount δ = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 20.0, 30.0, 40.0, and 50.0 Å.
We will not discuss about the offset-area. The horizontal axis
denote different values of δ and the vertical axis denotes the
computation time in msec. The two more efficient methods
i.e., the translation of the β-spans (TB) and the direct search
of the β-simplexes (DS) were implemented and tested. In the

Figure 12. Computation time of the direct search (DS) and the translation of
β-span (TB) methods for the offset-volumes (1rf8, 5071 atoms):TB in the broken
curve and DS in the solid curve. The difference, TB - DS, in the dotted curve. a)
Computation time measured at the 25 δ’s (from 0 to 50 Å) and b) the first 21 δ’s
(from 0 to 10 Å).

figure, the left vertical axis denotes the time taken by these
two algorithms and applies to the lower two curves: the broken
curve denotes TB and the solid curve denotes DS. Note that
these curves shows the marginal computation time after the
vdW-volume is computed (which means that the beta-complex
is already available). As theoretically shown previously, the DS-
method is slightly faster than the TB-method. The upper, dotted
curve denotes the difference between the two curves (i.e., TB -
DS) and the right vertical axis applies. The horizontal window of
δ in Figure 12a is between 0 and 50 Å and one for Figure 12b is
between 0 and 10 Å. Note that both curves have peaks around
δ = 0.5 Å and then monotonically decrease as δ increases.

Figure 13a shows the time in sec taken by DS-method for
computing both the offset-volume and the offset-area for the 20
selected models. Their id.’s are 5, 10, 15, . . . , 100 in the 100 test
models. There are five curves: δ = 0.5, 1.4, 3.0, 5.0, and 10.0 Å
from top to bottom. Note that this time is for the marginal
computation taken after the vdw-volume and the vdW-area are
computed (i.e., after the zero beta-complex is available). Note
two observations: (i) The computation time is tiny compared to
the vdW-volume computation; (ii) all the curves show the linear
increase. Figure 13b shows the marginal computation time for
the offset area after the offset volume is computed.
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Figure 13. Computation time of the DS-method for the offset-volume and the
offset-area (for the 20 selected models). a) The time for both the offset-volume
and the offset-area and b) the marginal time needed for the offset-area after
the offset-volume is computed.

Table B1 summarizes the statistics of the offset-volumes and
the offset-areas computed by the DS-method for the five off-
set amounts δ = 0.5, 1.4, 3.0, 5.0, and 10.0 Å. In the table, we
report test statistics for only five selected models, called the
offset test model set, out of the 100 test models due to space
limit. Their id.’s are 20, 40, 60, 80, and 100 in the 100 test
set models. For each of the offset test models, we computed
the offset-volumes and offset-areas by the DS-method and com-
pared them with the computation results using another type of
Monte Carlo simulation denoted by MCS-II. Each row in Table B1
denotes as follows. “β-decom” denotes the mass property com-
puted by the DS-method; “MCS-II” denotes the mass property
computed by MCS-II; “Abs diff” denotes the absolute difference
|β−decom − MCS−II|; “Rel diff” denotes the relative difference
|β−decom−MCS−II|

MCS−II
×100; and “βc+V+A” denotes the computation

of the beta-complex, the volume, and the area.

The algorithm for MCS-II was as follows: For the offset-volume,

we generated grid points in the bounding box of the offset-

model and stored them in a grid structure partitioning the

bounding box. With the grid structure, each sample point was

tested against those offset balls intersecting the grid cell con-

taining itself. The acceleration technique made MCS-II run much

faster than MCS-I did. On the other hand, the offset area in MCS-

II was measured as follows. We first produced a set of uniformly

distributed points on the boundary of each offset atom using the

spherical sampling technique proposed by Shao and Badler[65]

that was based on the Archimedes’ theorem. Given a point q

on the boundary of an offset atom o, if q was not contained

by some offset atom other than o, q contributed to the off-

set area. Provided the neighborhood information among offset

atoms, counting such sample points could be efficiently done.

For each run of MCS-II, 109 random points were used. Figure

5 in the Supporting Information shows the computation time

for MCS-II.

Figure 14a shows the absolute difference |V O
DS −V O

MCS−II
| of the

offset volume for the five selected models in Table B1 where V O
DS

and V O
MCS−II

denote the offset volumes computed by DS-method

and by MCS-II method, respectively. Each curve in the figure

corresponds to a particular value of the offset amount δ. Figure

14b similarly shows the absolute difference |AO
DS − AO

MCS−II
| of

the offset area where AO
DS and AO

MCS−II
denote the offset areas

computed by DS-method and by MCS-II method, respectively.

Figure 14c shows the relative difference
|V O

DS−V O
MCS−II

|
V O

MCS−II

×100 of the

offset volume. Figure 14d similarly shows the relative difference

for offset area. Note that the relative differences are very tightly

bounded and this observation verifies the correctness of both

the theory and the implementation. In the MCS-II result, the

numerical integration based on regular grid used in volume

computation converges faster than the Monte Carlo integra-

tion for area computation, as explained in many Monte-Carlo

literatures such as Ref. [66].

Conclusions

Computing the mass properties such as the volume and

area of vdW-molecule and its offset, usually referred to by

the Lee-Richards (solvent) accessible surface, has long been

an important research issue in the computational chemistry,

computational molecular biology, and structural biology. There

were many studies from the grid-based approach and Monte

Carlo simulation to analytic approach. However, this seemingly

well-defined problem has not been well-solved yet.

In this article, we propose an approach, called the beta-

decomposition, that is based on the recent theory of the

beta-complex which can be quickly computed from the quasi-

triangulation, the dual of the Voronoi diagram of the atoms

in molecules. As the name suggests, the Beta-decomposition

approach decomposes the desired mass property of the entire

molecule into a set of primitives. Then, the correct mass property

can be obtained by an appropriate summation of these primi-

tives with the proper consideration of redundancies among the

primitives.
Two algorithms were presented: Beta-decomposition-vdW

algorithm computes the vdW-volume and the vdW-area; Beta-
decomposition-offset algorithm computes the offset-volume
and the offset-area. These algorithms compute the mass prop-
erties in O(m) time in the worst case, where m represents
the number of simplexes in the beta-complex. We emphasize
that the computation time for the mass properties vdW-volume,
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Figure 14. Differences for the offset-volumes and offset-areas of the five test models computed using the direct search (DS) method for the offset amount
δ = 0.5, 1.4, 3.0, 5.0, and 10.0. 109 random points were used. a) the absolute difference of the offset-volume, b) the relative difference of the offset-volume, c) the
absolute difference of the offset-area, and d) the relative difference of the offset-area.

vdW-area, offset-volume, and offset-area altogether takes very
small if the quasi-triangulation is available. The correctness and
efficiency of the proposed algorithms and their implementa-
tion are also verified through an experiment using model data

publicly available from the Protein Data Bank (PDB).[4] The soft-
ware BetaMass implementing the proposed Beta-decomposition
algorithm is freely available from the VDRC web site at
//http:voronoi.hanyang.ac.kr.

Appendix A: Test Data Set

Table A1. The vdW-volume and vdW-area of the 100 test PDB models computed by the Beta-decomposition algorithm using the VDRC cluster computer.

Beta-decomposition Time (sec) MCS-I

No. ID (No. of atoms) vdW-vol (A) vdW-area (B) VD (C) QT (D) Beta-cmplx +A+B (E) Total (C+D+E) (F) MCS-vol (G) A-G (H) H
G

× 100 (I)

1 1c26 ( 268 ) 2893.820 3503.820 1.31 0.1 0.04 1.45 2893.505 0.315 0.011
2 2nls ( 270 ) 2931.660 3504.170 1.2 0.1 0.04 1.34 2931.614 0.046 0.002
3 2erw ( 401 ) 4308.170 5074.170 1.93 0.17 0.06 2.16 4308.106 0.064 0.001
4 1zx6 ( 447 ) 4823.530 5810.410 2.32 0.19 0.06 2.57 4823.704 −0.174 −0.004
5 1mhn ( 464 ) 5029.590 6043.980 2.27 0.21 0.06 2.54 5029.368 0.222 0.004
6 2igd ( 467 ) 5037.880 6102.680 2.33 0.21 0.07 2.61 5037.865 0.015 0.000
7 1zlm ( 476 ) 5114.750 6119.590 2.5 0.21 0.07 2.78 5115.102 −0.352 −0.007
8 1y0m ( 507 ) 5450.180 6560.810 2.68 0.22 0.08 2.98 5450.119 0.061 0.001
9 2g7o ( 543 ) 5893.890 7087.480 2.74 0.23 0.08 3.05 5893.852 0.038 0.001

10 3b7h ( 597 ) 6493.190 7780.360 3 0.27 0.09 3.36 6493.340 −0.150 −0.002
11 1t6f ( 616 ) 6695.750 8118.480 3.09 0.27 0.09 3.45 6695.515 0.235 0.004
12 2o37 ( 643 ) 6944.050 8305.020 3.39 0.28 0.1 3.77 6943.804 0.246 0.004
13 1zpw ( 663 ) 7203.330 8693.330 3.45 0.3 0.1 3.85 7203.438 −0.108 −0.001

(Continued)
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Table A1. (Continued)

Beta-decomposition Time (sec) MCS-I

No. ID (No. of atoms) vdW-vol (A) vdW-area (B) VD (C) QT (D) Beta-cmplx +A+B (E) Total (C+D+E) (F) MCS-vol (G) A-G (H) H
G

× 100 (I)

14 1j27 ( 778 ) 8490.750 10156.300 4.19 0.35 0.12 4.66 8491.035 −0.285 −0.003
15 1d4t ( 913 ) 9896.960 11898.600 4.84 0.42 0.14 5.4 9896.946 0.014 0.000
16 1qkd ( 944 ) 10122.000 11987.000 4.68 0.44 0.15 5.27 10121.838 0.162 0.002
17 1tp6 ( 983 ) 10590.600 12681.400 5.12 0.45 0.15 5.72 10590.288 0.312 0.003
18 2ggr ( 1008 ) 6682.870 6917.760 3.57 0.51 0.19 4.27 6682.660 0.210 0.003
19 1lz1 ( 1028 ) 11105.800 13220.400 5.28 0.48 0.17 5.93 11105.956 −0.156 −0.001
20 1dc9 ( 1057 ) 11461.600 13894.500 5.58 0.48 0.16 6.22 11461.498 0.102 0.001
21 1ezg ( 1106 ) 11885.600 14137.100 4.83 0.52 0.17 5.52 11885.674 −0.074 −0.001
22 2op6 ( 1144 ) 12414.400 14984.700 5.94 0.54 0.19 6.67 12413.950 0.450 0.004
23 2esk ( 1186 ) 12837.300 15319.000 6.39 0.56 0.19 7.14 12837.617 −0.317 −0.002
24 1t4q ( 1221 ) 13229.700 15818.400 6.51 0.57 0.19 7.27 13229.830 −0.130 −0.001
25 1jyh ( 1256 ) 13564.400 16197.100 6.83 0.6 0.2 7.63 13563.589 0.811 0.006
26 1yck ( 1305 ) 14027.800 16662.500 6.93 0.64 0.2 7.77 14027.878 −0.078 −0.001
27 2obi ( 1329 ) 14422.800 17211.300 7.17 0.65 0.21 8.03 14422.288 0.512 0.004
28 1wu3 ( 1389 ) 15093.000 18024.700 7.57 0.68 0.22 8.47 15093.780 −0.780 −0.005
29 2a8f ( 1426 ) 15510.400 18513.900 7.44 0.71 0.23 8.38 15510.890 −0.490 −0.003
30 2h3l ( 1542 ) 16637.000 20054.200 8.34 0.75 0.24 9.33 16637.208 −0.208 −0.001
31 2o7h ( 1596 ) 17445.700 21088.100 8.55 0.8 0.26 9.61 17444.607 1.093 0.006
32 2ggv ( 1621 ) 17523.900 21050.200 8.63 0.8 0.25 9.68 17524.190 −0.290 −0.002
33 2ge7 ( 1686 ) 18312.200 21879.300 8.97 0.84 0.27 10.08 18311.451 0.749 0.004
34 1k1b ( 1712 ) 18541.200 22235.400 9.02 0.84 0.28 10.14 18541.871 −0.671 −0.004
35 2yz1 ( 1752 ) 18920.600 22688.500 9.5 0.85 0.28 10.63 18919.913 0.687 0.004
36 4eug ( 1788 ) 19233.700 22849.300 9.96 0.9 0.3 11.16 19233.343 0.357 0.002
37 1i8k ( 1819 ) 19636.100 23531.200 9.75 0.9 0.29 10.94 19636.161 −0.061 0.000
38 2gpo ( 1857 ) 20357.300 24463.400 10.18 0.94 0.31 11.43 20357.031 0.269 0.001
39 1rav ( 1952 ) 21026.600 25092.300 10.66 0.96 0.33 11.95 21026.505 0.095 0.000
40 1fa8 ( 2000 ) 21598.200 25794.800 10.9 1.06 0.37 12.33 21597.012 1.188 0.006
41 1xqo ( 2054 ) 22232.500 26523.400 11.53 1.03 0.34 12.9 22232.268 0.232 0.001
42 1xba ( 2068 ) 22551.800 26968.500 11.52 1.03 0.33 12.88 22551.991 −0.191 −0.001
43 3bxy ( 2113 ) 22950.500 27613.000 11.65 1.05 0.34 13.04 22950.220 0.280 0.001
44 2h2r ( 2167 ) 23190.200 27579.900 11.76 1.11 0.35 13.22 23190.749 −0.549 −0.002
45 2cwc ( 2181 ) 23513.500 28016.300 12.11 1.09 0.36 13.56 23513.846 −0.346 −0.001
46 1syq ( 2199 ) 23962.700 28590.500 12.07 1.2 0.42 13.69 23960.735 1.965 0.008
47 1y2t ( 2268 ) 24401.600 29348.000 12.55 1.14 0.37 14.06 24401.707 −0.107 0.000
48 1ym5 ( 2292 ) 24865.400 29688.100 12.83 1.16 0.38 14.37 24866.365 −0.965 −0.004
49 1lf1 ( 2348 ) 25139.800 29972.000 12.84 1.18 0.39 14.41 25139.977 −0.177 −0.001
50 1y9u ( 2387 ) 25826.700 30999.900 13.27 1.24 0.4 14.91 25825.967 0.733 0.003
51 2guv ( 2415 ) 25635.200 30345.500 13.56 1.26 0.41 15.23 25635.063 0.137 0.001
52 1qxh ( 2448 ) 26473.900 31479.700 13.57 1.25 0.41 15.23 26474.183 −0.283 −0.001
53 2f6l ( 2507 ) 27098.300 32380.400 13.95 1.27 0.41 15.63 27099.927 −1.627 −0.006
54 1fhl ( 2597 ) 27846.500 33002.100 14.42 1.31 0.46 16.19 27846.883 −0.383 −0.001
55 1t45 ( 2642 ) 28688.400 34261.400 14.84 1.36 0.45 16.65 28689.473 −1.073 −0.004
56 1xix ( 2687 ) 28994.800 34586.400 15.06 1.38 0.44 16.88 28994.989 −0.189 −0.001
57 1x7f ( 2789 ) 30295.200 36423.200 15.55 1.46 0.45 17.46 30295.897 −0.697 −0.002
58 2g85 ( 2829 ) 30535.200 36371.900 15.72 1.47 0.47 17.66 30533.416 1.784 0.006
59 2ab0 ( 2900 ) 31525.800 37682.700 16.19 1.49 0.48 18.16 31523.816 1.984 0.006
60 1rh9 ( 2970 ) 32051.800 38281.800 16.73 1.56 0.5 18.79 32051.865 −0.065 0.000
61 2car ( 3026 ) 32748.500 39136.900 16.95 1.59 0.5 19.04 32749.597 −1.097 −0.003
62 2goi ( 3054 ) 32815.500 39201.200 16.71 1.58 0.52 18.81 32814.564 0.936 0.003
63 1d2k ( 3082 ) 33190.100 39575.700 17.41 1.62 0.51 19.54 33190.933 −0.833 −0.003
64 2i49 ( 3114 ) 33565.500 39875.100 17.61 1.62 0.52 19.75 33565.511 −0.011 0.000
65 1xh3 ( 3183 ) 34039.800 40712.700 17.89 1.66 0.52 20.07 34041.087 −1.287 −0.004
66 1eqp ( 3211 ) 34317.600 40827.600 18.28 1.67 0.53 20.48 34318.246 −0.646 −0.002
67 2fts ( 3298 ) 35876.300 43095.100 18.38 1.73 0.56 20.67 35875.540 0.760 0.002
68 2p19 ( 3344 ) 36392.400 43950.600 18.68 1.72 0.55 20.95 36392.840 −0.440 −0.001
69 2i3f ( 3348 ) 36436.800 43402.700 19.29 1.77 0.57 21.63 36437.360 −0.560 −0.002
70 1swh ( 3446 ) 36729.800 43816.500 19.55 1.86 0.58 21.99 36729.559 0.241 0.001
71 1ugq ( 3464 ) 37306.200 44284.500 19.64 1.83 0.6 22.07 37305.891 0.309 0.001
72 2f82 ( 3510 ) 38143.200 45606.500 19.67 1.88 0.6 22.15 38143.110 0.090 0.000
73 1xwg ( 3519 ) 38451.400 46209.900 20.11 1.84 0.58 22.53 38450.015 1.385 0.004
74 1xg2 ( 3573 ) 38623.900 46313.400 20.1 1.9 0.6 22.6 38624.408 −0.508 −0.001
75 2ol7 ( 3653 ) 39600.300 47856.100 20.34 1.92 0.6 22.86 39597.650 2.650 0.007
76 1zvt ( 3705 ) 40352.200 48585.900 20.58 1.91 0.61 23.1 40352.954 −0.754 −0.002
77 1r2t ( 3729 ) 40495.600 48561.100 21.08 1.97 0.62 23.67 40494.459 1.141 0.003

(Continued)
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Table A1. (Continued)

Beta-decomposition Time (sec) MCS-I

No. ID (No. of atoms) vdW-vol (A) vdW-area (B) VD (C) QT (D) Beta-cmplx +A+B (E) Total (C+D+E) (F) MCS-vol (G) A-G (H) H
G

× 100 (I)

78 1qb5 ( 3745 ) 40551.100 48491.000 20.16 1.98 0.62 22.76 40552.515 −1.415 −0.003
79 1orj ( 3847 ) 41817.800 49689.800 22.36 2.24 0.76 25.36 41816.313 1.487 0.004
80 1lbw ( 3930 ) 42447.900 50180.100 22.48 2.09 0.71 25.28 42447.459 0.441 0.001
81 1p7w ( 4056 ) 26588.600 29349.200 17.17 2.32 0.72 20.21 26589.333 −0.733 −0.003
82 1f60 ( 4090 ) 44394.300 53172.200 23.26 2.16 0.68 26.1 44395.523 −1.223 −0.003
83 2zwu ( 4106 ) 36561.800 42708.600 20.82 2.43 0.82 24.07 36560.773 1.027 0.003
84 1m0z ( 4113 ) 44675.200 53331.400 23.77 2.13 0.68 26.58 44672.652 2.548 0.006
85 1edq ( 4136 ) 44534.200 53075.500 24.09 2.2 0.69 26.98 44533.534 0.666 0.001
86 1mn6 ( 4191 ) 45076.000 53512.700 24.33 2.26 0.71 27.3 45075.667 0.333 0.001
87 2pjh ( 4319 ) 29105.900 31462.000 17.78 2.47 0.81 21.06 29105.420 0.480 0.002
88 1dqz ( 4360 ) 46805.900 55461.400 25.15 2.36 0.74 28.25 46806.548 −0.648 −0.001
89 1qtw ( 4363 ) 28490.600 31799.700 18.53 2.57 0.78 21.88 28489.848 0.752 0.003
90 1pfn ( 4456 ) 29242.200 30618.000 18.01 2.57 0.88 21.46 29242.089 0.111 0.000
91 1zrs ( 4503 ) 48649.000 58407.900 25.94 2.42 0.76 29.12 48649.186 −0.186 0.000
92 1eai ( 4536 ) 48959.000 58687.800 25.23 2.43 0.75 28.41 48958.256 0.744 0.002
93 1ls1 ( 4549 ) 29358.000 32342.300 19.31 2.67 0.84 22.82 29357.007 0.993 0.003
94 1o4x ( 4640 ) 31517.500 34324.100 19.26 2.64 0.83 22.73 31517.434 0.066 0.000
95 1war ( 4765 ) 31706.700 35945.500 21.56 2.8 0.95 25.31 31706.211 0.489 0.002
96 1ils ( 4772 ) 44054.400 51331.500 24.37 2.54 0.82 27.73 44054.622 −0.222 −0.001
97 3f86 ( 4781 ) 30793.300 33833.400 21.75 2.86 0.88 25.49 30793.895 −0.595 −0.002
98 2aiy ( 4794 ) 32458.500 33694.800 19.73 2.75 0.98 23.46 32459.388 −0.888 −0.003
99 2gas ( 4838 ) 52300.900 62291.000 28.58 2.57 0.82 31.97 52298.055 2.845 0.005

100 1rf8 ( 5071 ) 33277.400 33337.500 21.94 2.97 1.04 25.95 33276.701 0.699 0.002

The MCS-vol(ume) is computed by the Monte Carlo Simulation (MCS-I) with 1010 random points.

Appendix B: Offset-Volumes of Five Selected Models

Table B1. The offset-volumes of the five selected models computed by the direct search (DS) method for the five offset amounts: δ = 0.5, 1.4, 3.0, 5.0, and
10.0 Å.

Offset amount (δ)

#’ # ID Offset Analysis 0.5 1.4 3.0 5.0 10.0

1 20 1dc9 Vol β-decomp 18334.109 26814.342 38372.590 53359.788 100856.424
(1057) MCS-II 18334.109 26814.257 38372.587 53359.874 100856.508

Abs diff 0.000 0.085 0.003 0.086 0.084
Rel diff 0.000 0.000 0.000 0.000 0.000

Area β-decomp 12517.240 7707.435 7095.114 7971.568 11192.575
MCS-II 12517.557 7708.081 7094.829 7967.044 11188.684

Abs diff 0.317 0.645 0.285 4.524 3.891
Rel diff 0.003 0.008 0.004 0.057 0.035

Time (sec) βc + V + A 0.080 0.060 0.040 0.030 0.030

2 40 1fa8 Vol β-decomp 33805.278 47698.544 67702.976 92974.529 166341.756
(2000) MCS-II 33805.341 47698.366 67703.005 92974.728 166341.756

Abs diff 0.063 0.178 0.029 0.199 0.000
Rel diff 0.000 0.000 0.000 0.000 0.000

Area β-decomp 20884.706 12994.867 12385.876 13017.280 16645.748
MCS-II 20884.925 12995.486 12386.894 13020.522 16650.688

Abs diff 0.219 0.619 1.018 3.242 4.940
Rel diff 0.001 0.005 0.008 0.025 0.030

Time (sec) βc + V + A 0.270 0.200 0.130 0.090 0.060

3 60 1rh9 Vol β-decomp 49777.805 67194.095 89562.978 117429.741 198039.148
(2970) MCS-II 49777.866 67194.116 89562.921 117429.901 198038.976

Abs diff 0.061 0.021 0.057 0.160 0.172
Rel diff 0.000 0.000 0.000 0.000 0.000

Area β-decomp 28978.563 14971.262 13686.486 14358.715 18180.924
MCS-II 28976.581 14967.873 13682.357 14353.618 18165.279

Abs diff 1.982 3.388 4.129 5.097 15.645
Rel diff 0.007 0.023 0.030 0.036 0.086

Time (sec) βc + V + A 0.480 0.320 0.180 0.140 0.090

(Continued)
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Table B1. (Continued)

Offset amount (δ)

#’ # ID Offset Analysis 0.5 1.4 3.0 5.0 10.0

4 80 1lbw Vol β-decomp 65694.864 88752.164 118258.387 153520.723 252442.099
(3930) MCS-II 65694.806 88752.013 118258.569 153520.699 252441.823

Abs diff 0.058 0.151 0.182 0.025 0.276
Rel diff 0.000 0.000 0.000 0.000 0.000

Area β-decomp 38338.852 19758.284 17743.607 17923.232 21998.187
MCS-II 38335.914 19758.959 17748.089 17930.073 22004.894

Abs diff 2.938 0.675 4.482 6.841 6.707
Rel diff 0.008 0.003 0.025 0.038 0.030

Time (sec) βc + V + A 0.730 0.510 0.280 0.200 0.140

5 *100 1rf8 Vol β-decomp 47594.566 66021.662 95332.631 133601.144 240741.939
(5071) MCS-II 47594.880 66021.275 95332.783 133601.766 240741.809

Abs diff 0.314 0.387 0.152 0.622 0.130
Rel diff 0.001 0.001 0.000 0.000 0.000

Area β-decomp 24361.757 18634.544 18527.257 19742.939 23679.163
MCS-II 24358.076 18634.645 18528.667 19761.702 23694.828

Abs diff 3.681 0.100 1.411 18.763 15.665
Rel diff 0.015 0.001 0.008 0.095 0.066

Time (sec) βc + V + A 0.950 0.590 0.320 0.230 0.160

109 random points were used. “Abs diff” denotes the absolute difference |V O
DS − V O

MCS−II
| and “Rel diff” denotes the relative difference

|V O
DS−V O

MCS−II
|

V O
MCS−II

× 100.

“βc + V + A” denotes the computation of the beta-complex, the volume, and the area.

Acknowledgments

The authors thank the anonymous reviewers who helped to improve

the quality of this article significantly.

Keywords: molecular surface • molecular volume • molecular
area • van der Waals volume • van der Waals area • sol-
vent accessible surface • Lee-Richards (accessible) surface •
accessible volume • accessible area • offset surface • offset-
volume • offset-area • Voronoi diagram of spheres • quasi-
triangulation • beta-complex • beta-shape

How to cite this article: D.-S. Kim, J. Ryu, H. Shin,
Y. Cho, J. Comput. Chem. 2012, 33, 1252–1273. DOI:
10.1002/jcc.22956

Additional Supporting Information may be found in the
online version of this article.

[1] F. M. Richards, J. Mol. Biol. 1974, 82, 1.

[2] D.-S. Kim, C.-I. Won, J. Bhak, J. Biomol. Struct. Dyn. 2010, 28, 277.

[3] L. R. Dodd, D. N. Theodorou, Mol. Phys. 1991, 72, 1313.

[4] RCSB Protein Data Bank, 2009, Available at http://www.rcsb.org/
pdb/. Accessed on September 2010.

[5] Voronoi Diagram Research Center, 2011, Available at http://
voronoi.hanyang.ac.kr/.

[6] A. Shrake, J. A. Rupley, J. Mol. Biol. 1973, 79, 351.

[7] R. Abagyan, M. Totrov, D. Kuznetsov, J. Comput. Chem. 1994, 15, 488.

[8] A. Gavezzotti, J. Am. Chem. Soc. 1983, 105, 5220.

[9] J. Higo, N. Go, J. Comput. Chem. 1989, 10, 376.

[10] H. R. Karfunkel, V. Eyraud, J. Comput. Chem. 1989, 10, 628.

[11] E. Silla, F. Villar, O. Nilsson, J. L. Pascual-Ahuir, O. Tapia, J. Mol. Graph. 1990,
8, 168.

[12] E. Silla, I. Tunon, J. L. Pascual-Ahuir, J. Comput. Chem. 1991, 12, 1077.

[13] M. L. Connolly, J. Am. Chem. Soc. 1985, 107, 1118.

[14] F. Eisenhaber, P. Lijnzaad, P. Argos, C. Sander, M. Scharf, J. Comput. Chem.

1995, 16, 273.

[15] K. Rother, P. W. Hildebrand, A. Goede, B. Gruening, R. Preissner, Nucleic

Acids Res. 2009, 37, 393.

[16] M. S. Till, G. M. Ullmann, J. Mol. Model. 2010, 16, 419.

[17] J. D. Bernal, J. L. Finney, Discuss. Faraday Soc. 1967, 43, 62.

[18] B. J. Gellatly, J. L. Finney, J. Mol. Biol., 1982, 161, 305.

[19] M. Gerstein, J. Tsai, M. Levitt, J. Mol. Biol. 1995, 249, 955.

[20] A. Goede, R. Preissner, C. Frömmel, J. Comput. Chem. 1997, 18, 1113.

[21] H.-M. Will, Fast and Efficient Computation of Additively Weighted Voronoi
Cells for Applications in Molecular Biology. In Proceedings of the 6th
Skandinavian Workshop on Algorithm Theory, S. Arnborg, L. Ivans-
son, Eds., Vol. 1432 of Lecture Notes in Computer Science, 1998;
pp. 310–321.

[22] D.-S. Kim, Y. Cho, D. Kim, Comput.-Aid. Des. 2005, 37, 1412.

[23] D. Kim, D.-S. Kim, Comput.-Aid. Des. 2006, 38, 417.

[24] H. Edelsbrunner, E. P. Mücke, ACM Trans. Graph. 1994, 13, 43.

[25] H. Edelsbrunner, Weighted alpha shapes, Technical Report UIUCDCS-
R-92-1760, Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, IL, 1992.

[26] D.-S. Kim, J. Seo, D. Kim, J. Ryu, C.-H. Cho, Comput.-Aid. Des. 2006, 38, 1179.

[27] D.-S. Kim, Y. Cho, K. Sugihara, J. Ryu, D. Kim, Comput.-Aid.Des. 2010, 42, 911.

[28] M. L. Connolly, J. Appl. Crystallogr. 1983, 16, 548.

[29] G. Perrot, B. Cheng, K. Gibson, J. Vila, K. Palmer, A. Nayeem, B. Maigret,
H. Scheraga, J. Comput. Chem. 1992, 13, 1.

[30] D. Avis, B. K. Bhattacharya, H. Imai, Vis. Comput. 1988, 3, 323.

[31] R. Fraczkiewicz, W. Braun, J. Comput. Chem. 1998, 19, 319.

[32] M. Irisa, Comput. Phys. Commun. 1996, 98, 317.

[33] B. J. McConkey, V. Sobolev, M. Edelman, Bioinformatics 2002, 18, 1365.

[34] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, S. Schönherr, Soft.: Pract.

Exp. 2000, 30, 1167.

[35] CGAL Library Homepage, http://www.cgal.org/. Accessed on August
2009.

[36] F. Cazals, H. Kanhere, S. Loriot, Computing the Volume of a Union of
Balls: A Certified Algorithm Technical Report, INRIA Sophia Antipolis,
August, 2009.

1272 Journal of Computational Chemistry 2012, 33, 1252–1273 http://WWW.CHEMISTRYVIEWS.COM



http://WWW.C-CHEM.ORG FULLPAPER

[37] F. Cazals, H. Kanhere, S. Loriot, ACM Trans. Math. Soft. 2011, 38, 1.

[38] K. W. Kratky, J. Phys. A: Math. Gen. 1978, 11, 1017.

[39] K. D. Gibson, H. A. Scheraga, Mol. Phys. 1987, 62, 1247.

[40] R. Pavani, G. Ranghino, Comput. Chem. 1982, 6, 133.

[41] L. S. Chkhartishvili, Math. Notes 2001, 69, 421.

[42] D. Q. Naiman, H. P. Wynn, Ann. Stat. 1992, 20, 43.

[43] M. Petitjean, J. Comput. Chem. 1994, 15, 507.

[44] H. Edelsbrunner, Discrete Comput. Geom. 1995, 13, 415.

[45] D. Attali, H. Edelsbrunner, In Proceedings of the 21st Annual Symposium
on Computational Geometry (SoCG’06), Pisa, Italy, 2006; pp. 247–254.

[46] H. Edelsbrunner, M. Facello, P. Fu, J. Liang, In Proceedings of the 28th
Annual Hawaii International Conference on System Sciences (HICSS’95),
1995; pp. 256–264.

[47] T. Nishida, K. Sugihara, In Proceedings of the 5th International Symposium
on Voronoi diagrams in Science and Engineering, 2008; pp. 22–28.

[48] F. Aurenhammer, SIAM J. Comput. 1987, 16, 78.

[49] N. N. Medvedev, Doklady Phys. Chem. 1994, 337, 157.

[50] S. V. Anishchik, N. N. Medvedev, Phys. Rev. Lett. 1995, 75, 4314.

[51] H.-M. Will, Computation of Additively Weighted Voronoi Cells for Appli-
cations in Molecular Biology, PhD thesis, Swiss Federal Institute of
Technology, Zurich, 1999.

[52] J.-D. Boissonnat, M. I. Karavelas, In Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2003; pp. 305–312.

[53] M. Gavrilova, Proximity and Applications in General Metrics, PhD thesis,
Department of Computer Science, The University of Calgary, Calgary,
Canada, 1998.

[54] M. Gavrilova, J. Rokne, Comput. Aid. Geom. Des. 2003, 20, 231.

[55] V. A. Luchnikov, N. N. Medvedev, L. Oger, J.-P. Troadec, Phys. Rev. E 1999,
59, 7205.

[56] D.-S. Kim, Y. Cho, D. Kim, In Proceedings of the 16th Canadian Conference
on Computational Geometry, 2004; pp. 176–179.

[57] N. N. Medvedev, V. P. Voloshin, V. A. Luchnikov, M. L. Gavrilova, J. Comput.

Chem. 2006, 27, 1676.

[58] D.-S. Kim, D. Kim, Y. Cho, K. Sugihara, Comput.-Aid. Des. 2006, 38, 808.

[59] D.-S. Kim, Y. Cho, K. Sugihara, Comput.-Aid. Des. 2010, 42, 874.

[60] D.-S. Kim, J.-K. Kim, Y. Cho, C.-M. Kim, Comput.-Aid. Des. 2012, 44, 85.

[61] D.-S. Kim, Y. Cho, J. Ryu, C.-M. Kim, Comput.-Aid. Des. 2010, 42, 795.

[62] J. Harris, H. Stocker, J. W. Harris, Handbook of Mathematics and
Computational Science; Springer-Verlag New York Inc, New York, 1998.

[63] R. PDB, RCSB PDB 2008 annual Technical report, RCSB PDB, 2008.

[64] S. Dutta, K. Burkhardt, J. Young, G. J. Swaminathan, T. Matsuura, K. Henrick,
H. Nakamura, H. M. Berman, Mol. Biotechnol. 2009, 42, 1.

[65] M.-Z. Shao, N. Badler, Spherical sampling by archimedes’ theorem,
Technical Report, University of Pennsylvania, 1996.

[66] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer-
Verlag New York Inc, New York, 2000.

Received: 7 March 2011

Revised: 24 December 2011

Accepted: 28 January 2012

Published online on 7 March 2012

http://onlinelibrary.wiley.com Journal of Computational Chemistry 2012, 33, 1252–1273 1273


